NASA

nasa-closing-its-original-repository-for-columbia-artifacts-to-tours

NASA closing its original repository for Columbia artifacts to tours

NASA is changing the way that its employees come in contact with, and remember, one of its worst tragedies.

In the wake of the 2003 loss of the space shuttle Columbia and its STS-107 crew, NASA created a program to use the orbiter’s debris for research and education at Kennedy Space Center in Florida. Agency employees were invited to see what remained of the space shuttle as a powerful reminder as to why they had to be diligent in their work. Access to the Columbia Research and Preservation Office, though, was limited as a result of its location and related logistics.

To address that and open up the experience to more of the workforce at Kennedy, the agency has quietly begun work to establish a new facility.

“The room, titled Columbia Learning Center (CLC), is a whole new concept,” a NASA spokesperson wrote in an email. “There are no access requirements; anyone at NASA Kennedy can go in any day of the week and stay as long as they like. The CLC will be available whenever employees need the inspiration and message for generations to come.”

Debris depository

On February 1, 2003, Columbia was making its way back from a 16-day science mission in Earth orbit when the damage that it suffered during its launch resulted in the orbiter breaking apart over East Texas. Instead of landing at Kennedy as planned, Columbia fell to the ground in more than 85,000 pieces.

The tragedy claimed the lives of commander Rick Husband, pilot Willie McCool, mission specialists David Brown, Kalpana Chawla, Michael Anderson, and Laurel Clark, and payload specialist Ilan Ramon of Israel.

NASA closing its original repository for Columbia artifacts to tours Read More »

scientists:-it’s-do-or-die-time-for-america’s-primacy-exploring-the-solar-system

Scientists: It’s do or die time for America’s primacy exploring the Solar System


“When you turn off those spacecraft’s radio receivers, there’s no way to turn them back on.”

A life-size replica of the New Horizons spacecraft on display at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center near Washington Dulles International Airport in Northern Virginia. Credit: Johns Hopkins University Applied Physics Laboratory

Federal funding is about to run out for 19 active space missions studying Earth’s climate, exploring the Solar System, and probing mysteries of the Universe.

This year’s budget expires at the end of this month, and Congress must act before October 1 to avert a government shutdown. If Congress passes a budget before then, it will most likely be in the form of a continuing resolution, an extension of this year’s funding levels into the first few weeks or months of fiscal year 2026.

The White House’s budget request for fiscal year 2026 calls for a 25 percent cut to NASA’s overall budget, and a nearly 50 percent reduction in funding for the agency’s Science Mission Directorate. These cuts would cut off money for at least 41 missions, including 19 already in space and many more far along in development.

Normally, a president’s budget request isn’t the final say on matters. Lawmakers in the House and Senate have written their own budget bills in the last several months. There are differences between each appropriations bill, but they broadly reject most of the Trump administration’s proposed cuts.

Still, this hasn’t quelled the anxieties of anyone with a professional or layman’s interest in space science. The 19 active robotic missions chosen for cancellation are operating beyond their original design lifetime. However, in many cases, they are in pursuit of scientific data that no other mission has a chance of collecting for decades or longer.

A “tragic capitulation”

Some of the mission names are recognizable to anyone with a passing interest in NASA’s work. They include the agency’s two Orbiting Carbon Observatory missions monitoring data signatures related to climate change, the Chandra X-ray Observatory, which survived a budget scare last year, and two of NASA’s three active satellites orbiting Mars.

And there’s New Horizons, a spacecraft that made front-page headlines in 2015 when it beamed home the first up-close pictures of Pluto. Another mission on the chopping block is Juno, the world’s only spacecraft currently at Jupiter.

Both spacecraft have more to offer, according to the scientists leading the missions.

“New Horizons is perfectly healthy,” said Alan Stern, the mission’s principal investigator at Southwest Research Institute (SWRI). “Everything on the spacecraft is working. All the spacecraft subsystems are performing perfectly, as close to perfectly as one could ever hope. And all the instruments are, too. The spacecraft has the fuel and power to run into the late 2040s or maybe 2050.”

New Horizons is a decade and more than 2.5 billion miles (4.1 billion kilometers) beyond Pluto. The probe flew by a frozen object named Arrokoth on New Year’s Day 2019, returning images of the most distant world ever explored by a spacecraft. Since then, the mission has continued its speedy departure from the Solar System and could become the third spacecraft to return data from interstellar space.

Alan Stern, leader of NASA’s New Horizons mission, speaks during the Tencent WE Summit at Beijing Exhibition Theater on November 6, 2016, in China. Credit: Visual China Group via Getty Images

New Horizons cost taxpayers $780 million from the start of development through the end of its primary mission after exploring Pluto. The project received $9.7 million from NASA to cover operations costs in 2024, the most recent year with full budget data.

It’s unlikely New Horizons will be able to make another close flyby of an object like it did with Pluto and Arrokoth. But the science results keep rolling in. Just last year, scientists announced the news that New Horizons found the Kuiper Belt—a vast outer zone of hundreds of thousands of small, icy worlds beyond the orbit of Neptune—might extend much farther out than previously thought.

“We’re waiting for government, in the form of Congress, the administration, to come up with a funding bill for FY26, which will tell us if our mission is on the chopping block or not,” Stern said. “The administration’s proposal is to cancel essentially every extended mission … So, we’re not being singled out, but we would get caught in that.”

Stern, who served as head of NASA’s science division in 2007 and 2008, said the surest way to prevent the White House’s cuts is for Congress to pass a budget with specific instructions for the Trump administration.

“The administration ultimately will make some decision based on what Congress does,” Stern said. “If Congress passes a continuing resolution, then that opens a whole lot of other possibilities where the administration could do something without express direction from Congress. We’re just going to have to see where we end up at the end of September and then in the fall.”

Stern said shutting down so many of NASA’s science missions would be a “tragic capitulation of US leadership” and “fiscally irresponsible.”

“We’re pretty undeniably the frontrunner, and have been for decades, in space sciences,” Stern said. “There’s much more money in overruns than there is in what it costs to run these missions—I mean, dramatically. And yet, by cutting overruns, you don’t affect our leadership position. Turning off spacecraft would put us in third or fourth place, depending on who you talk to, behind the Chinese and the Europeans at least, and maybe behind others.”

Stern resigned his job as NASA’s science chief in 2008 after taking a similar stance arguing against cuts to healthy projects and research grants to cover overruns in other programs, according to a report in Science Magazine.

An unforeseen contribution from Juno

Juno, meanwhile, has been orbiting Jupiter since 2016, collecting information on the giant planet’s internal structure, magnetic field, and atmosphere.

“Everything is functional,” said Scott Bolton, the lead scientist on Juno, also from SWRI. “There’s been some degradation, things that we saw many years ago, but those haven’t changed. Actually, some of them improved, to be honest.”

The only caveat with Juno is some radiation damage to its camera, called JunoCam. Juno orbits Jupiter once every 33 days, and the trajectory brings the spacecraft through intense radiation belts trapped by the planet’s powerful magnetic field. Juno’s primary mission ended in 2021, and it’s now operating in an extended mission approved through the end of this month. The additional time exposed to harsh radiation is, not surprisingly, corrupting JunoCam’s images.

NASA’s Juno mission observed the glow from a bolt of lightning in this view from December 30, 2020, of a vortex near Jupiter’s north pole. Citizen scientist Kevin M. Gill processed the image from raw data from the JunoCam instrument aboard the spacecraft. Credit: NASA/JPL-Caltech/SwRI/MSSS Image processing by Kevin M. Gill © CC BY

In an interview with Ars, Bolton suggested the radiation issue creates another opportunity for NASA to learn from the Juno mission. Ground teams are attempting to repair the JunoCam imager through annealing, a self-healing process that involves heating the instrument’s electronics and then allowing them to cool. Engineers sparingly tried annealing hardware space, so Juno’s experience could be instructive for future missions.

“Even satellites at Earth experience this [radiation damage], but there’s very little done or known about it,” Bolton said. “In fact, what we’re learning with Juno has benefits for Earth satellites, both commercial and national security.”

Juno’s passages through Jupiter’s harsh radiation belts provide a real-world laboratory to experiment with annealing in space. “We can’t really produce the natural radiation environment at Earth or Jupiter in a lab,” Bolton said.

Lessons learned from Juno could soon be applied to NASA’s next probe traveling to Jupiter. Europa Clipper launched last year and is on course to enter orbit around Jupiter in 2030, when it will begin regular low-altitude flybys of the planet’s icy moon Europa. Before Clipper’s launch, engineers discovered a flaw that could make the spacecraft’s transistors more susceptible to radiation damage. NASA managers decided to proceed with the mission because they determined the damage could be repaired at Jupiter with annealing.

“So, we have rationale to hopefully continue Juno because of science, national security, and it sort of fits in the goals of exploration as well, because you have high radiation even in these translunar orbits [heading to the Moon],” Bolton said. “Learning about how to deal with that and how to build spacecraft better to survive that, and how to repair them, is really an interesting twist that we came by on accident, but nevertheless, turns out to be really important.”

It cost $28.4 million to operate Juno in 2024, compared to NASA’s $1.13 billion investment to build, launch, and fly the spacecraft to Jupiter.

On May 19, 2010, technicians oversee the installation of the large radiation vault onto NASA’s Juno spacecraft propulsion module. This protects the spacecraft’s vital flight and science computers from the harsh radiation at Jupiter. Credit: Lockheed Martin

“We’re hoping everything’s going to keep going,” Bolton said. “We put in a proposal for three years. The science is potentially very good. … But it’s sort of unknown. We just are waiting to hear and waiting for direction from NASA, and we’re watching all of the budget scenarios, just like everybody else, in the news.”

NASA headquarters earlier this year asked Stern and Bolton, along with teams leading other science missions coming under the ax, for an outline of what it would take and what it would cost to “close out” their projects. “We sent something that was that was a sketch of what it might look like,” Bolton said.

A “closeout” would be irreversible for at least some of the 19 missions at risk of termination.

“Termination doesn’t just mean shutting down the contract and sending everybody away, but it’s also turning the spacecraft off,” Stern said. “And when you turn off those spacecraft’s radio receivers, there’s no way to turn them back on because they’re off. They can never get a command in.

“So, if we change our mind, we’ve had another election, or had some congressional action, anything like that, it’s really terminating the spacecraft, and there’s no going back.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Scientists: It’s do or die time for America’s primacy exploring the Solar System Read More »

nasa-found-intriguing-rocks-on-mars,-so-where-does-that-leave-mars-sample-return?

NASA found intriguing rocks on Mars, so where does that leave Mars Sample Return?

NASA’s interim administrator, Sean Duffy, was fired up on Wednesday when he joined a teleconference to talk about new scientific findings that concerned the potential for life to have once existed on Mars.

“This is exciting news,” said Duffy about an arrow-shaped rock on Mars found by NASA’s Perseverance rover. The rock contained chemical signatures and structures that could have been formed by ancient microbial life. The findings were intriguing, but not conclusive. Further study of the rocks in an advanced lab on Earth might prove more definitive.

Duffy was ready, he said, to discuss the scientific results along with NASA experts on the call with reporters. However, the very first question—and for any space reporter, the obvious one—concerned NASA’s on-again, off-again plan to return rocks from the surface of Mars for study on Earth. This mission, called Mars Sample Return, has been on hold for nearly two years after an independent analysis found that NASA’s bloated plan would cost at least $8 billion to $11 billion. President Trump has sought to cancel it outright.

Duffy faces the space press

“What’s the latest on NASA’s plans to retrieve the samples from Perseverance?” asked Marcia Dunn, a reporter with the Associated Press, about small vials of rocks collected by the NASA rover on Mars.

“So listen, we’re looking at how we get this sample back, or other samples back,” Duffy replied. “What we’re going to do is look at our budget, so we look at our timing, and you know, how do we spend money better? And you know, what technology do we have to get samples back more quickly? And so that’s a current analysis that’s happening right now.”

A couple of questions later, Ken Chang, a science reporter with The New York Times, asked Duffy why President Trump’s budget request called for the cancellation of Mars Sample Return and whether that was still the president’s intent.

“I want to be really clear,” Duffy replied. “This is a 30-year process that NASA has undertaken. President Trump didn’t say, ‘Hey, let’s forget about Mars.’ No, we’re continuing our exploration. And by the way, we’ve been very clear under this president that we don’t want to just bring samples back from Mars. We want to send our boots to the Moon and to Mars, and that is the work that we’re doing. Amit (Kshatriya, the new associate administrator of NASA) even said maybe we’ll send our equipment to test this sample to Mars itself. All options are on the table.”

NASA found intriguing rocks on Mars, so where does that leave Mars Sample Return? Read More »

rocket-report:-russia’s-rocket-engine-predicament;-300th-launch-to-the-iss

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS


North Korea test-fired a powerful new solid rocket motor for its next-generation ICBM.

A Soyuz-2.1a rocket is propelled by kerosene-fueled RD-107A and RD-108A engines after lifting off Thursday with a resupply ship bound for the International Space Station. Credit: Roscosmos

Welcome to Edition 8.10 of the Rocket Report! Dear readers, if everything goes according to plan, four astronauts are less than six months away from traveling around the far side of the Moon and breaking free of low-Earth orbit for the first time in more than 53 years. Yes, there are good reasons to question NASA’s long-term plans for the Artemis lunar programthe woeful cost of the Space Launch System rocket, the complexity of new commercial landers, and a bleak budget outlook. But many of us who were born after the Apollo Moon landings have been waiting for this moment our whole lives. It is almost upon us.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

North Korea fires solid rocket motor. North Korea said Tuesday it had conducted the final ground test of a solid-fuel rocket engine for a long-range ballistic missile in its latest advancement toward having an arsenal that could viably threaten the continental United States, the Associated Press reports. The test Monday observed by leader Kim Jong Un was the ninth of the solid rocket motor built with carbon fiber and capable of producing 1,971 kilonewtons (443,000 pounds) of thrust, more powerful than past models, according to the North’s official Korean Central News Agency.

Mobility and flexibility … Solid-fueled intercontinental ballistic missiles, or ICBMs, have advantages over liquid-fueled missiles, which have historically comprised the bulk of North Korea’s inventory. Solid rocket motors can be stored for longer periods of time and are easier to conceal, transport, and launch on demand. The new solid rocket motor will be used on a missile called the Hwasong-20, according to North Korean state media. The AP reports some analysts say North Korea may conduct another ICBM test around the end of the year, showcasing its military strength ahead of a major ruling party congress expected in early 2026.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Astrobotic eyes Andøya. US-based lunar logistics company Astrobotic and Norwegian spaceport operator Andøya Space have signed a term sheet outlining the framework for a Launch Site Agreement, European Spaceflight reports. The agreement, once finalized, will facilitate flights of Astrobotic’s Xodiac lander testbed from the Andøya Space facilities. The Xodiac vertical takeoff, vertical landing rocket was initially developed by Masten Space Systems to simulate landing on the Moon and Mars. When Masten filed for bankruptcy in 2022, Astrobotic acquired its intellectual property and assets, including the Xodiac vehicle.

Across the pond … So far, the small Xodiac rocket has flown on low-altitude atmospheric hops from Mojave, California, reaching altitudes of up to 500 meters, or 1,640 feet. The agreement between Astrobotic and Andøya paves the way for “several” Xodiac flight campaigns from Andøya Space facilities on the Norwegian coast. “Xodiac’s presence at Andøya represents a meaningful step toward delivering reliable, rapid, and cost-effective testing and demonstration capabilities to the European space market,” said Astrobotic CEO John Thornton.

Ursa Major breaks ground in Colorado. Ursa Major on Wednesday said it has broken ground on a new 400-acre site where it will test and qualify large-scale solid rocket motors for current and future missiles, including the Navy’s Standard Missile fleet, Defense Daily reports. The new site in Weld County, Colorado, north of Denver, will be ready for testing to begin in the fourth quarter of 2025. Ursa Major will be able to conduct full-scale static firings, and drop and temperature storage testing for current and future missile systems.

Seeking SRM options … Ursa Major said the new facility will support national and missile defense programs. The company’s portfolio includes solid rocket motors (SRMs) ranging from 2 inches to 22 inches in diameter for missiles like the Stinger, Javelin, and air-defense interceptors. Ursa Major aims to join industry incumbents Northrop Grumman, L3Harris, and newcomer Anduril as a major supplier of SRMs to the government. “This facility represents a major step forward in our ability to deliver qualified SRMs that are scalable, flexible, and ready to meet the evolving threat environment,” said Dan Jablonsky, CEO of Ursa Major, in a statement. “It’s a clear demonstration of our commitment and ability to rapidly advance and expand the American-made solid rocket motor industrial base that the country needs, ensuring warfighters will have the quality and quantity of SRMs needed to meet mission demands.”

Falcon 9 launches first satellites in a military megaconstellation. The first 21 satellites in a constellation that could become a cornerstone for the Pentagon’s Golden Dome missile-defense shield successfully launched from California Wednesday aboard a SpaceX Falcon 9 rocket, Ars reports. The Falcon 9 took off from Vandenberg Space Force Base, California, and headed south over the Pacific Ocean, reaching an orbit over the poles before releasing the 21 military-owned satellites to begin several weeks of activations and checkouts.

First of many … These 21 satellites will boost themselves to a final orbit at an altitude of roughly 600 miles (1,000 kilometers). The Pentagon plans to launch 133 more satellites over the next nine months to complete the build-out of the Space Development Agency’s first-generation, or Tranche 1, constellation of missile-tracking and data-relay satellites. Military officials have worked for six years to reach this moment. The Space Development Agency (SDA) was established during the first Trump administration, which made plans for an initial set of demonstration satellites that launched a couple of years ago. In 2022, the Pentagon awarded contracts for the first 154 operational spacecraft, including the ones launched Wednesday. “Back in 2019, when the SDA was stood up, it was to do two things. One was to make sure that we can do beyond line of sight targeting, and the other was to pace the threat, the emerging threat, in the missile-warning and missile-tracking domain. That’s what the focus has been,” said Gurpartap “GP” Sandhoo, the SDA’s acting director.

Another Falcon 9 was delayed three times. SpaceX scrubbed launching a communications satellite from an Indonesian company for a third consecutive day Wednesday, Spaceflight Now reports. Possible technical issues got in the way of a launch attempt Wednesday evening after back-to-back days of weather delays at Cape Canaveral Space Force Station, Florida. The Falcon 9 finally launched Thursday evening with the Boeing-built Nusantara Lima communications satellite, targeting a geosynchronous transfer orbit. It’s the latest satellite from the Indonesian company Pasifik Satelit Nusantara.

A declining market … This was just the fifth geosynchronous communications satellite to launch on a commercial rocket this year, all by SpaceX. There were 21 such satellites that launched on commercial vehicles in 2015, including SpaceX’s Falcon 9, Europe’s Ariane 5, Russia’s Proton, ULA’s Atlas V, and Japan’s H-IIA. Much of the world’s launch capacity today is used to deploy smaller communications satellites into low-Earth orbit, primarily for broadband connectivity rather than for the video broadcast market once dominated by higher-altitude geosynchronous satellites.

Putin urges Russia to build more rocket engines. Russian President Vladimir Putin urged aerospace industry leaders on September 5 to press on with efforts to develop booster rocket engines for space launch vehicles and build on Russia’s longstanding reputation as a leader in space technology, Reuters reports. Putin, who spent the preceding days in China and the Russian far eastern port of Vladivostok, flew to the southern Russian city of Samara, where he met industry specialists and toured the Kuznetsov design bureau engine manufacturing plant.

A shell of its former self … “It is important to consistently renew production capacity in terms of engines for booster rockets,” Russian news agencies quoted Putin as saying during the visit. “And in doing so, we must not only meet our own current and future needs but also move actively on world markets and be successful competitors.” The Kuznetsov plant in Samara builds medium-class RD-107 and RD-108 engines for Russia’s Soyuz-2 rockets, which launch Russian military satellites and crew and cargo to the International Space Station. Their designs can be traced to the dawn of the Space Age nearly 70 years ago. Meanwhile, the outlook for heavier-duty Russian rocket engines is murky, at best. Russia’s most-flown large rocket engine in the post-Cold War era, the RD-180, produced by a company called Energomash, is out of production after the end of sales to the United States.

India nabs a noteworthy launch contract. Astroscale, a satellite servicing and space debris mitigation company based in Japan, has selected India’s Polar Satellite Launch Vehicle (PSLV) to deliver a small satellite named ISSA-J1 to orbit in 2027. This is an interesting mission. The ISSA-J1 spacecraft will fly up to two large pieces of satellite debris in orbit to image and inspect them. ISSA-J1, developed in partnership with the Japanese government, is one in a series of Astroscale missions testing different ways of approaching, monitoring, capturing, and refueling other objects in space. The launch agreement was signed between Astroscale and NewSpace India Limited, the commercial arm of India’s space agency.

Rideshare not an option … “We selected NSIL after thorough evaluations of more than 10 launch service providers over the past year, considering technical capabilities, track record, cost, and other elements,” said Eddie Kato, president and managing director of Astroscale Japan. India’s PSLV is right-sized for a mission like this. ISSA-J1 is a rarity in that it must launch on a dedicated rocket because it has to reach a specific orbit to line up with the pieces of space debris it will approach and inspect. Rideshare launches, such as those that routinely fly on SpaceX’s Falcon 9 rocket, are cheaper but go to standard orbits popular for many different types of satellite missions. A dedicated launch on a Falcon 9 would presumably have been more expensive than a flight on India’s smaller PSLV. Rocket Lab’s Electron, another rocket popular for dedicated launches of small satellites, lacks the performance required for Astroscale’s mission.

Russian cargo en route to ISS. Another cargo ship is flying to humanity’s orbital outpost with the successful launch of Russia’s Progress MS-32 supply freighter Thursday from the Baikonur Cosmodrome in Kazakhstan, NASASpaceflight.com reports. The supply ship launched aboard a Soyuz-2.1a rocket and arrived in orbit about nine minutes later, kicking off a two-day pursuit of the International Space Station. This was the 300th launch of an assembly, crew, or cargo mission to the ISS since 1998, including a handful of missions that didn’t reach the complex due to rocket or spacecraft failures.

Important stuff … The Progress MS-32 cargo craft will dock with the aft port of the space station’s Russian Zvezda service module Saturday. The payloads flying on the Progress mission include food, experiments, clothing, water, air, and propellant to be pumped into the space station’s onboard tanks. The spacecraft will also reboost the lab’s orbit.

Metallic tiles? Not so great. It has been two weeks since SpaceX’s last Starship test flight, and engineers have diagnosed issues with its heat shield, identified improvements, and developed a preliminary plan for the next time the ship heads into space, Ars reports. Bill Gerstenmaier, a SpaceX executive in charge of build and flight reliability, presented the findings Monday at the American Astronautical Society’s Glenn Space Technology Symposium in Cleveland. The test flight went “extremely well,” Gerstenmaier said, but he noted some important lessons learned with the ship’s heat shield.

Crunch wrap reigns supreme “We were essentially doing a test to see if we could get by with non-ceramic tiles, so we put three metal tiles on the side of the ship to see if they would provide adequate heat control, because they would be simpler to manufacture and more durable than the ceramic tiles. It turns out they’re not,” Gerstenmaier said. “The metal tiles… didn’t work so well.” One bright spot with the heat shield was the performance of a new experimental material around and under the tiles. “We call it crunch wrap,” Gerstenmaier said. “It’s like a wrapping paper that goes around each tile.” On the next Starship flight, SpaceX will likely cover more parts of the heat shield with this crunch wrap material. Gerstenmaier said the inaugural flight of Starship Version 3, with upgraded engines and more fuel, is now set to occur next year.

An SLS compromise might be afoot in DC. The Trump administration is seeking to cancel NASA’s Space Launch System rocket after two more flights, but key lawmakers in Congress, including Republican Sen. Ted Cruz of Texas, aren’t ready to go along.  So is this an impasse? Possibly not, as sources say the White House and Congress may not be all that far apart on how to handle this. The solution involves canceling part of the SLS rocket now, but not all of it, Ars reports.

Goodbye EUS? … The compromise might be to cancel a large new upper stage for the SLS rocket called the Exploration Upper Stage. This would save NASA billions of dollars, and the agency could instead procure commercial upper stages, such as those built by United Launch Alliance or Blue Origin, to fly on SLS rockets after NASA’s Artemis III mission. It would also eliminate the need for NASA to finish building an expensive new launch tower at Kennedy Space Center, Florida. The upper stage flying on the first three SLS missions is no longer in production. Sources indicated to Ars that Blue Origin has already begun work on a modified version of its New Glenn upper stage that could fit within the shroud of the SLS rocket.

Next three launches

Sept. 13: Soyuz-2.1b | Glonass-K1 No. 18L | Plesetsk Cosmodrome, Russia | 02: 30 UTC

Sept. 13: Falcon 9 | Starlink 17-10 | Vandenberg Space Force Base, California | 15: 41 UTC

Sept. 14: Falcon 9 | Cygnus NG-23 | Cape Canaveral Space Force Station, Florida | 22: 11 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS Read More »

congress-and-trump-may-compromise-on-the-sls-rocket-by-axing-its-costly-upper-stage

Congress and Trump may compromise on the SLS rocket by axing its costly upper stage

There are myriad questions about how NASA’s budget process will play out in the coming weeks, with the start of the new fiscal year on October 1 looming.

For example, the Trump administration may seek to shut off dozens of science missions that are either already in space or in development. Although Congress has signaled a desire to keep these missions active, absent a confirmed budget, the White House has made plans to turn off the lights.

Some answers may be forthcoming this week, as the House Appropriations Committee will take up the Commerce, Justice, and Science budget bill on Wednesday morning. However great uncertainty remains about whether there will be a budget passed by October 1 (unlikely), a continuing resolution, or a government shutdown.

Behind the scenes, discussions are also taking place about NASA’s Artemis Program in general and the future of the Space Launch System rocket specifically.

$4 billion a launch is too much

From the beginning, the second Trump administration has sought to cancel the costly, expendable rocket. Some officials wanted to end the rocket immediately,  but eventually the White House decided to push for cancellation after Artemis III. This seemed prudent because it allowed the United States the best possible chance to land humans back on the Moon before China got there, and then transition to a more affordable lunar program as quickly as possible.

Congress, particularly US Sen. Ted. Cruz, R-Texas, was not amenable. And so, in supplemental funding as part of the “One Big Beautiful Bill,” Cruz locked in billions of dollars to ensure that Artemis IV and Artemis V flew on the SLS rocket, with the promise of additional missions.

Since the release of its budget proposal in May, which called for an end to the SLS rocket after Artemis III, the White House has largely been silent, offering no response to Congress. However that changed last week, when interim NASA Administrator Sean Duffy addressed the issue on a podcast hosted by one of the agency’s public relations officials, Gary Jordan:

Congress and Trump may compromise on the SLS rocket by axing its costly upper stage Read More »

gop-may-finally-succeed-in-unrelenting-quest-to-kill-two-nasa-climate-satellites

GOP may finally succeed in unrelenting quest to kill two NASA climate satellites

Before satellite measurements, researchers relied on estimates and data from a smattering of air and ground-based sensors. An instrument on Mauna Loa, Hawaii, with the longest record of direct carbon dioxide measurements, is also slated for shutdown under Trump’s budget.

It requires a sustained, consistent dataset to recognize trends. That’s why, for example, the US government has funded a series of Landsat satellites since 1972 to create an uninterrupted data catalog illustrating changes in global land use.

But NASA is now poised to shut off OCO-2 and OCO-3 instead of thinking about how to replace them when they inevitably cease working. The missions are now operating beyond their original design lives, but scientists say both instruments are in good health.

Can anyone replace NASA?

Research institutes in Japan, China, and Europe have launched their own greenhouse gas-monitoring satellites. So far, all of them lack the spatial resolution of the OCO instruments, meaning they can’t identify emission sources with the same precision as the US missions. A new European mission called CO2M will come closest to replicating OCO-2 and OCO-3, but it won’t launch until 2027.

Several private groups have launched their own satellites to measure atmospheric chemicals, but these have primarily focused on detecting localized methane emissions for regulatory purposes, and not on global trends.

One of the newer groups in this sector, known as the Carbon Mapper Coalition, launched its first small satellite last year. This nonprofit consortium includes contributors from JPL, the same lab that spawned the OCO instruments, as well as Planet Labs, the California Air Resources Board, universities, and private investment funds.

Government leaders in Montgomery County, Maryland, have set a goal of reducing greenhouse gas emissions by 80 percent by 2027, and 100 percent by 2035. Mark Elrich, the Democratic county executive, said the pending termination of NASA’s carbon-monitoring missions “weakens our ability to hold polluters accountable.”

“This decision would … wipe out years of research that helps us understand greenhouse gas emissions, plant health, and the forces that are driving climate change,” Elrich said in a press conference last month.

GOP may finally succeed in unrelenting quest to kill two NASA climate satellites Read More »

nasa’s-acting-chief-“angry”-about-talk-that-china-will-beat-us-back-to-the-moon

NASA’s acting chief “angry” about talk that China will beat US back to the Moon

NASA’s interim administrator, Sean Duffy, said Thursday he has heard the recent talk about how some people are starting to believe that China will land humans on the Moon before NASA can return there with the Artemis Program.

“We had testimony that said NASA will not beat China to the Moon,” Duffy remarked during an all-hands meeting with NASA employees. “That was shade thrown on all of NASA. I heard it, and I gotta tell you what, maybe I am competitive, I was angry about it. I can tell you what, I’ll be damned if that is the story that we write. We are going to beat the Chinese to the Moon.”

Duffy’s remarks followed a Congressional hearing on Wednesday during which former Congressman Jim Bridenstine, who served as NASA administrator during President Trump’s first term, said China had pulled ahead of NASA and the United States in the second space race.

“Unless something changes, it is highly unlikely the United States will beat China’s projected timeline to the Moon’s surface,” said Bridenstine, who led the creation of the Artemis Program in 2019. China has said multiple times that it intends to land taikonuats on the Moon before the year 2030.

A lot of TV appearances

Duffy’s remarks were characteristic of his tenure since his appointment two months ago by Trump to serve as interim administrator of the space agency. He has made frequent appearances on Fox News and offered generally upbeat views of NASA’s position in its competition with China for supremacy in space. And on Friday, in a slickly produced video, he said, “I’m committed to getting us back to the Moon before President Trump leaves office.”

Sources have said Duffy, already a cabinet member as the secretary of transportation, is also angling to remove the “interim” from his NASA administrator title. Like Bridenstine, he has a capable political background and politics that align with the Trump administration. He is an excellent public speaker and knows the value of speaking to the president through Fox News. To date, however, he has shown limited recognition of the reality of the current competition with China.

NASA’s acting chief “angry” about talk that China will beat US back to the Moon Read More »

lull-in-falcon-heavy-missions-opens-window-for-spacex-to-build-new-landing-pads

Lull in Falcon Heavy missions opens window for SpaceX to build new landing pads

SpaceX’s goal for this year is 170 Falcon 9 launches, and the company is on pace to come close to this target. Most Falcon 9 launches carry SpaceX’s own Starlink broadband satellites into orbit. The FAA’s environmental approval opens the door for more flights from SpaceX’s busiest launch pad.

But launch pad availability is not the only hurdle limiting how many Falcon 9 flights can take off in a year. There’s also the rate of production for Falcon 9 upper stages, which are new on each flight, and the time it takes for each vessel in SpaceX’s fleet of drone ships (one in California, two in Florida) to return to port with a recovered booster and redeploy back to sea again for the next mission. SpaceX lands Falcon 9 boosters on offshore drone ships after most of its launches and only brings the rocket back to an onshore landing on missions carrying lighter payloads to orbit.

When a Falcon 9 booster does return to landing on land, it targets one of SpaceX’s recovery zones at military-run spaceports in Florida and California. SpaceX’s landing zone at Vandenberg Space Force Base in California is close to the Falcon 9 launch pad there.

The Space Force wants SpaceX, and potentially other future reusable rocket companies, to replicate the side-by-side launch and landing pads at Cape Canaveral.

To do that, the FAA also gave the green light Wednesday for SpaceX to construct and operate a new rocket landing zone at SLC-40 and conduct up to 34 first-stage booster landings there each year. The landing zone will consist of a 280-foot diameter concrete pad surrounded by a 60-foot-wide gravel apron. The landing zone’s broadest diameter, including the apron, will measure 400 feet.

The location of SpaceX’s new rocket landing pad is shown with the red circle, approximately 1,000 feet northeast of the Falcon 9 rocket’s launch pad at Space Launch Complex-40. Credit: Google Maps/Ars Technica

SpaceX is in an earlier phase of planning for a Falcon landing pad at historic Launch Complex-39A at NASA’s Kennedy Space Center, just a few miles north of SLC-40. SpaceX uses LC-39A as a launch pad for most Falcon 9 crew launches, all Falcon Heavy missions, and, in the future, flights of the company’s gigantic next-generation rocket, Starship. SpaceX foresees Starship as a replacement for Falcon 9 and Falcon Heavy, but the company’s continuing investment in Falcon-related infrastructure shows the workhorse rocket will stick around for a while.

Lull in Falcon Heavy missions opens window for SpaceX to build new landing pads Read More »

former-nasa-chief-says-united-states-likely-to-lose-second-lunar-space-race

Former NASA chief says United States likely to lose second lunar space race

The hearing, titled “There’s a Bad Moon on the Rise: Why Congress and NASA Must Thwart China in the Space Race,” had no witnesses who disagreed with this viewpoint. They included Allen Cutler, CEO of the Coalition for Deep Space Exploration, the chief lobbying organization for SLS, Orion, and Gateway; Jim Bridenstine, former NASA Administrator who now leads government operations for United Launch Alliance; Mike Gold of Redwire, a Gateway contractor; and Lt. General John Shaw, former Space Command official.

The hearing before the committee chaired by Cruz, Commerce, Science, and Transportation, included the usual mishmash of parochial politics, lobbying for traditional space, back slapping, and fawning—at one point, Gold, a Star Trek fan, went so far as to assert that Cruz is the “Captain Kirk” of the US Senate.

Beyond this, however, there was a fair amount of teeth gnashing about the fact that the United States faces a serious threat from China, which appears to be on course to put humans on the Moon before NASA can return there with the Artemis Program. China aims to land humans at the South Pole before the year 2030.

NASA likely to lose “race”

Bridenstine, who oversaw the creation of the Artemis Program half a decade ago, put it most bluntly: “Unless something changes, it is highly unlikely the United States will beat China’s projected timeline to the Moon’s surface,” he said.

Bridenstine and others on the panel criticized the complex nature of SpaceX’s Starship-based lunar lander, which NASA selected in April 2021 as a means to get astronauts down to the lunar surface and back. The proposal relies on Starship being refueled in low-Earth orbit by multiple Starship tanker launches.

Former NASA chief says United States likely to lose second lunar space race Read More »

spacex’s-latest-dragon-mission-will-breathe-more-fire-at-the-space-station

SpaceX’s latest Dragon mission will breathe more fire at the space station

“Our capsule’s engines are not pointed in the right direction for optimum boost,” said Sarah Walker, SpaceX’s director of Dragon mission management. “So, this trunk module has engines pointed in the right direction to maximize efficiency of propellant usage.”

When NASA says it’s the right time, SpaceX controllers will command the Draco thrusters to ignite and gently accelerate the massive 450-ton complex. All told, the reboost kit can add about 20 mph, or 9 meters per second, to the space station’s already-dizzying speed, according to Walker.

Spetch said that’s roughly equivalent to the total reboost impulse provided by one-and-a-half Russian Progress cargo vehicles. That’s about one-third to one-fourth of the total orbit maintenance the ISS needs in a year.

“The boost kit will help sustain the orbiting lab’s altitude, starting in September, with a series of burns planned periodically throughout the fall of 2025,” Spetch said.

After a few months docked at the ISS, the Dragon cargo capsule will depart and head for a parachute-assisted splashdown in the Pacific Ocean off the coast of California. SpaceX will recover the pressurized capsule to fly again, while the trunk containing the reboost kit will jettison and burn up in the atmosphere.

SpaceX’s Dragon spacecraft approaches the International Space Station for docking at 7: 05 am EDT (11: 05 UTC) on Monday. Credit: NASA TV/Ars Technica

While this mission is SpaceX’s 33rd cargo flight to the ISS under the auspices of NASA’s multibillion-dollar Commercial Resupply Services contract, it’s also SpaceX’s 50th overall Dragon mission to the outpost. This tally includes 17 flights of the human-rated Crew Dragon.

“With CRS-33, we’ll mark our 50th voyage to ISS,” Walker said. “Just incredible. Together, these missions have (carried) well over 300,000 pounds of cargo and supplies to the orbiting lab and well over 1,000 science and research projects that are not only helping us to understand how to live and work effectively in space… but also directly contributing to critical research that serves our lives here on Earth.”

Future Dragon trunks will be able to accommodate a reboost kit or unpressurized science payloads, depending on NASA’s needs at the space station.

The design of the Dragon reboost kit is a smaller-scale version of what SpaceX will build for a much larger Dragon trunk under a $843 million contract signed with NASA last year for the US Deorbit Vehicle. This souped-up Dragon will dock with the ISS and steer it back into the atmosphere after the lab’s decommissioning in the early 2030s. The deorbit vehicle will have 46 Draco thrusters—16 to control the craft’s orientation and 30 in the trunk to provide the impulse needed to drop the station out of orbit.

SpaceX’s latest Dragon mission will breathe more fire at the space station Read More »

time-is-running-out-for-spacex-to-make-a-splash-with-second-gen-starship

Time is running out for SpaceX to make a splash with second-gen Starship


SpaceX is gearing up for another Starship launch after three straight disappointing test flights.

SpaceX’s 10th Starship rocket awaits liftoff. Credit: Stephen Clark/Ars Technica

STARBASE, Texas—A beehive of aerospace technicians, construction workers, and spaceflight fans descended on South Texas this weekend in advance of the next test flight of SpaceX’s gigantic Starship rocket, the largest vehicle of its kind ever built.

Towering 404 feet (123.1 meters) tall, the rocket was supposed to lift off during a one-hour launch window beginning at 6: 30 pm CDT (7: 30 pm EDT; 23: 30 UTC) Sunday. But SpaceX called off the launch attempt about an hour before liftoff to investigate a ground system issue at Starbase, located a few miles north of the US-Mexico border.

SpaceX didn’t immediately confirm when it might try again to launch Starship, but it could happen as soon as Monday evening at the same time.

It will take about 66 minutes for the rocket to travel from the launch pad in Texas to a splashdown zone in the Indian Ocean northwest of Australia. You can watch the test flight live on SpaceX’s official website. We’ve also embedded a livestream from Spaceflight Now and LabPadre below.

This will be the 10th full-scale test flight of Starship and its Super Heavy booster stage. It’s the fourth flight of an upgraded version of Starship conceived as a stepping stone to a more reliable, heavier-duty version of the rocket designed to carry up to 150 metric tons, or some 330,000 pounds, of cargo to pretty much anywhere in the inner part of our Solar System.

But this iteration of Starship, known as Block 2 or Version 2, has been anything but reliable. After reeling off a series of increasingly successful flights last year with the first-generation Starship and Super Heavy booster, SpaceX has encountered repeated setbacks since debuting Starship Version 2 in January.

Now, there are just two Starship Version 2s left to fly, including the vehicle poised for launch this week. Then, SpaceX will move on to Version 3, the design intended to go all the way to low-Earth orbit, where it can be refueled for longer expeditions into deep space.

A closer look at the top of SpaceX’s Starship rocket, tail number Ship 37, showing some of the different configurations of heat shield tiles SpaceX wants to test on this flight. Credit: Stephen Clark/Ars Technica

Starship’s promised cargo capacity is unparalleled in the history of rocketry. The privately developed rocket’s enormous size, coupled with SpaceX’s plan to make it fully reusable, could enable cargo and human missions to the Moon and Mars. SpaceX’s most conspicuous contract for Starship is with NASA, which plans to use a version of the ship as a human-rated Moon lander for the agency’s Artemis program. With this contract, Starship is central to the US government’s plans to try to beat China back to the Moon.

Closer to home, SpaceX intends to use Starship to haul massive loads of more powerful Starlink Internet satellites into low-Earth orbit. The US military is interested in using Starship for a range of national security missions, some of which could scarcely be imagined just a few years ago. SpaceX wants its factory to churn out a Starship rocket every day, approximately the same rate Boeing builds its workhorse 737 passenger jets.

Starship, of course, is immeasurably more complex than an airliner, and it sees temperature extremes, aerodynamic loads, and vibrations that would destroy a commercial airplane.

For any of this to become reality, SpaceX needs to begin ticking off a lengthy to-do list of technical milestones. The interim objectives include things like catching and reusing Starships and in-orbit ship-to-ship refueling, with a final goal of long-duration spaceflight to reach the Moon and stay there for weeks, months, or years. For a time late last year, it appeared as if SpaceX might be on track to reach at least the first two of these milestones by now.

The 404-foot-tall (123-meter) Starship rocket and Super Heavy booster stand on SpaceX’s launch pad. In the foreground, there are empty loading docks where tanker trucks deliver propellants and other gases to the launch site. Credit: Stephen Clark/Ars Technica

Instead, SpaceX’s schedule for catching and reusing Starships, and refueling ships in orbit, has slipped well into next year. A Moon landing is probably at least several years away. And a touchdown on Mars? Maybe in the 2030s. Before Starship can sniff those milestones, engineers must get the rocket to survive from liftoff through splashdown. This would confirm that recent changes made to the ship’s heat shield work as expected.

Three test flights attempting to do just this ended prematurely in January, March, and May. These failures prevented SpaceX from gathering data on several different tile designs, including insulators made of ceramic and metallic materials, and a tile with “active cooling” to fortify the craft as it reenters the atmosphere.

The heat shield is supposed to protect the rocket’s stainless steel skin from temperatures reaching 2,600° Fahrenheit (1,430° Celsius). During last year’s test flights, it worked well enough for Starship to guide itself to an on-target controlled splashdown in the Indian Ocean, halfway around the world from SpaceX’s launch site in Starbase, Texas.

But the ship lost some of its tiles during each flight last year, causing damage to the ship’s underlying structure. While this wasn’t bad enough to prevent the vehicle from reaching the ocean intact, it would cause difficulties in refurbishing the rocket for another flight. Eventually, SpaceX wants to catch Starships returning from space with giant robotic arms back at the launch pad. The vision, according to SpaceX founder and CEO Elon Musk, is to recover the ship, quickly mount it on another booster, refuel it, and launch it again.

If SpaceX can accomplish this, the ship must return from space with its heat shield in pristine condition. The evidence from last year’s test flights showed engineers had a long way to go for that to happen.

Visitors survey the landscape at Starbase, Texas, where industry and nature collide. Credit: Stephen Clark/Ars Technica

The Starship setbacks this year have been caused by problems in the ship’s propulsion and fuel systems. Another Starship exploded on a test stand in June at SpaceX’s sprawling rocket development facility in South Texas. SpaceX engineers identified different causes for each of the failures. You can read about them in our previous story.

Apart from testing the heat shield, the goals for this week’s Starship flight include testing an engine-out capability on the Super Heavy booster. Engineers will intentionally disable one of the booster’s Raptor engines used to slow down for landing, and instead use another Raptor engine from the rocket’s middle ring. At liftoff, 33 methane-fueled Raptor engines will power the Super Heavy booster off the pad.

SpaceX won’t try to catch the booster back at the launch pad this time, as it did on three occasions late last year and earlier this year. The booster catches have been one of the bright spots for the Starship program as progress on the rocket’s upper stage floundered. SpaceX reused a previously flown Super Heavy booster for the first time on the most recent Starship launch in May.

The booster landing experiment on this week’s flight will happen a few minutes after launch over the Gulf of Mexico east of the Texas coastline. Meanwhile, six Raptor engines will fire until approximately T+plus 9 minutes to accelerate the ship, or upper stage, into space.

The ship is programmed to release eight Starlink satellite simulators from its payload bay in a test of the craft’s payload deployment mechanism. That will be followed by a brief restart of one of the ship’s Raptor engines to adjust its trajectory for reentry, set to begin around 47 minutes into the mission.

If Starship makes it that far, that will be when engineers finally get a taste of the heat shield data they were hungry for at the start of the year.

This story was updated at 8: 30 pm EDT after SpaceX scrubbed Sunday’s launch attempt.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Time is running out for SpaceX to make a splash with second-gen Starship Read More »

after-recent-tests,-china-appears-likely-to-beat-the-united-states-back-to-the-moon

After recent tests, China appears likely to beat the United States back to the Moon


An expert explains why this will be enormously bad for the United States.

China’s Long March-10 rocket conducts its first static fire test at the Wenchang Spacecraft Launch Site on August 15, 2025. Credit: VCG via Getty Images

China’s Long March-10 rocket conducts its first static fire test at the Wenchang Spacecraft Launch Site on August 15, 2025. Credit: VCG via Getty Images

In recent weeks, the secretive Chinese space program has reported some significant milestones in developing its program to land astronauts on the lunar surface by the year 2030.

On August 6, the China Manned Space Agency successfully tested a high-fidelity mockup of its 26-ton “Lanyue” lunar lander. The test, conducted outside of Beijing, used giant tethers to simulate lunar gravity as the vehicle fired main engines and fine control thrusters to land on a cratered surface and take off from there.

“The test,” said the agency in an official statement, “represents a key step in the development of China’s manned lunar exploration program, and also marks the first time that China has carried out a test of extraterrestrial landing and takeoff capabilities of a manned spacecraft.”

As part of the statement, the space agency reconfirmed that it plans to land its astronauts on the Moon “before” 2030.

Then, last Friday, the space agency and its state-operated rocket developer, the China Academy of Launch Vehicle Technology, successfully conducted a 30-second test firing of the Long March 10 rocket’s center core with its seven YF-100K engines that burn kerosene and liquid oxygen. The primary variant of the rocket will combine three of these cores to lift about 70 metric tons to low-Earth orbit.

These successful efforts followed a launch escape system test of the new Mengzhou spacecraft in June. A version of this spacecraft is planned for lunar missions.

On track for 2030

Thus, China’s space program is making demonstrable progress in all three of the major elements of its lunar program: the large rocket to launch a crew spacecraft, which will carry humans to lunar orbit, plus the lander that will take astronauts down to the surface and back. This work suggests that China is on course to land on the Moon before the end of this decade.

For the United States and its allies in space, there are reasons to be dismissive of this. For one, NASA landed humans on the Moon nearly six decades ago with the Apollo Program. Been there, done that.

Moreover, the initial phases of the Chinese program look derivative of Apollo, particularly a lander that strikingly resembles the Lunar Module. NASA can justifiably point to its Artemis Program and say it is attempting to learn the lessons of Apollo—that the program was canceled because it was not sustainable. With its lunar landers, NASA seeks to develop in-space propellant storage and refueling technology, allowing for lower cost, reusable lunar missions with the capability to bring much more mass to the Moon and back. This should eventually allow for the development of a lunar economy and enable a robust government-commercial enterprise.

China’s Lanyue lander undergoes tests in early August.

Credit: CCTV

China’s Lanyue lander undergoes tests in early August. Credit: CCTV

But recent setbacks with SpaceX’s Starship vehicle–one of two lunar landers under contract with NASA, alongside Blue Origin’s Mark 2 lander—indicate that it will still be several years until these newer technologies are ready to go. So it’s now probable that China will “beat” NASA back to the Moon this decade and win at least the initial heat of this new space race.

To put this into perspective, Ars connected with Dean Cheng, one of the most respected analysts on China, space policy, and the geopolitical implications of the new space competition. He was also a researcher at the Heritage Foundation for 13 years, where he focused on China. (He was not involved with Project 2025.) Now “sort of” retired, in his own words, Cheng is presently a non-resident fellow at the George Washington University Space Policy Institute.

The implications of this for the West

Ars: How significant was the Lanyue lander demonstration? Does this indicate the Chinese space program remains on track to land humans on the Moon by or before 2030?

Dean Cheng: The Lanyue lander is significant because it’s part of the usual Chinese “crawl-walk-run” approach to major space (and other scientific) projects. The [People’s Republic of China] can benefit from other people’s experiences (much of NASA’s information is open), but they still have to build and operate the spacecraft themselves. So the test of the Lanyue lander, successful or not, is an important part of that process.

Note that the Chinese also this week had a successful static test of the LM-10, which is their lunar SLV (satellite launch vehicle). This, along with the Lanyue, indicates that the Chinese lunar program is pushing ahead. The LM-10, even more than the Lanyue, is significant because it’s a new launch vehicle, in the wake of problems with the LM-5 and the cancellation of the LM-9 (which was probably their Saturn-V equivalent).

Ars: How likely is it that China lands humans on the Moon before NASA can return there with the Artemis Program?

Cheng: At the rate things are going, sadly, it seems quite likely that the Chinese will land on the Moon before NASA can return to the Moon.

Ars: What would the geopolitical impact be if China beats the United States back to the Moon?

Cheng: The geopolitical impact of the Chinese beating the US to the Moon (where we are returning) would be enormous.

Ars: How so?

Cheng: It means the end of American exceptionalism. One of the hallmarks of the post-1969 era was that only the United States had been able to land someone on the Moon (or any other celestial body). This was bound to end, but the constant American refrain of “We’ve put a man on the Moon, we can do anything” will certainly no longer resonate.

It means China can do “big” things, and the United States cannot. The US cannot even replicate projects it undertook 50 (or more) years ago. The optics of “the passing of the American age” would be evident—and that in turn would absolutely affect other nations’ perceptions of who is winning/losing the broader technological and ideological competition between the US and the PRC.

A few years back, there was talk of “The Beijing Consensus” as an alternative to the “Washington Consensus.” The Washington Consensus posited that the path forward was democracy, pluralism, and capitalism. The Beijing consensus argued that one only needed economic modernization. That, in fact, political authoritarianism was more likely to lead to modernization and advancement. This ideological element would be reinforced if Beijing can do the “big” things but the US cannot.

And what will be the language of cis-lunar space? The Chinese are not aiming to simply go to the Moon. Their choice of landing sites (most likely the South Pole) suggests an intent to establish longer-term facilities and presence. If China regularly dispatches lunar missions (not just this first one), then it will rightfully be able to argue that Chinese should be a language, if not the language, of lunar/cis-lunar space traffic management. As important, China will have an enormous say over technical standards, data standards, etc., for cis-lunar activities. The PRC has already said it will be deploying a lunar PNT (positioning, navigation, and timing) network and likely a communications system, (given the BeiDou’s dual capabilities in this regard).

Ars: Taking the longer view, is the United States or China better positioned (i.e., US spending on defense, reusable in-space architecture vs Chinese plans) to dominate cislunar space between now and the middle of this century?

Cheng: On paper, the US has most of the advantages. We have a larger economy, more experience in space, extant space industrial capacity for reusable space launch, etc. But we have not had programmatic stability so that we are consistently pursuing the same goal over time. During Trump-1, the US said it would go to the Moon with people by 2024. Here we are, halfway through 2025. Trump-2 seems to once again be swinging wildly from going (back) to the Moon to going to Mars. Scientific and engineering advances don’t do well in the face of such wild swings and inconstancy.

By contrast, the Chinese are stable, systematic. They pursue a given goal (e.g., human spaceflight, a space station) over decades, with persistence and programmatic (both budgetarily and in terms of goals) stability. So I expect that the Chinese will put a Chinese person on the Moon by 2030 and follow that with additional crewed and unmanned facilities. This will be supported by a built-out infrastructure of lunar PNT/comms. The US will almost certainly put people on the Moon in a landing in the next several years, but then what? Is Lunar Gateway going to be real? How often will the US go to the Moon, as the Chinese go over and over?

Ars: Do you have any advice for the Trump administration in order to better compete with China in this effort to not only land on the Moon but have a dominant presence there?

Cheng: The Trump administration needs to make a programmatic commitment to some goal, whether the Moon or Mars. It needs to mobilize Congress and the public to support that goal. It needs to fund that goal, but as important, it also needs to have a high-level commitment and oversight, such as the VP and the National Space Council in the first Trump administration. There is little/no obvious direction at the moment for where space is going in this administration, and what its priorities are.

This lack of direction then affects the likelihood that industry, whether big business or entrepreneurs, can support whatever efforts do emerge. If POTUS wants to rely more on entrepreneurial business (a reasonable approach), he nonetheless needs to provide indications of this. It would help to also provide incentives, e.g., a follow-on to the Ansari and X-prizes, which did lead to a blossoming of innovation.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

After recent tests, China appears likely to beat the United States back to the Moon Read More »