oceanography

experiment-will-attempt-to-counter-climate-change-by-altering-ocean

Experiment will attempt to counter climate change by altering ocean


Gulf of Maine will be site of safety and effectiveness testing.

Woods Hole researchers, Adam Subhas (left) and Chris Murray, conducted a series of lab experiments earlier this year to test the impact of an alkaline substance, known as sodium hydroxide, on copepods in the Gulf of Maine. Credit: Daniel Hentz/Woods Hole Oceanographic Institution

Later this summer, a fluorescent reddish-pink spiral will bloom across the Wilkinson Basin in the Gulf of Maine, about 40 miles northeast of Cape Cod. Scientists from the Woods Hole Oceanographic Institution will release the nontoxic water tracer dye behind their research vessel, where it will unfurl into a half-mile wide temporary plume, bright enough to catch the attention of passing boats and even satellites.

As it spreads, the researchers will track its movement to monitor a tightly controlled, federally approved experiment testing whether the ocean can be engineered to absorb more carbon, and in turn, help combat the climate crisis.

As the world struggles to stay below the 1.5° Celsius global warming threshold—a goal set out in the Paris Agreement to avoid the most severe impacts of climate change—experts agree that reducing greenhouse gas emissions won’t be enough to avoid overshooting this target. The latest Intergovernmental Panel on Climate Change report, published in 2023, emphasizes the urgent need to actively remove carbon from the atmosphere, too.

“If we really want to have a shot at mitigating the worst effects of climate change, carbon removal needs to start scaling to the point where it can supplement large-scale emissions reductions,” said Adam Subhas, an associate scientist in marine chemistry and geochemistry at the Woods Hole Oceanographic Institution, who will oversee the week-long experiment.

The test is part of the LOC-NESS project—short for Locking away Ocean Carbon in the Northeast Shelf and Slope—which Subhas has been leading since 2023. The ongoing research initiative is evaluating the effectiveness and environmental impact of a marine carbon dioxide removal approach called ocean alkalinity enhancement (OAE).

This method of marine carbon dioxide removal involves adding alkaline substances to the ocean to boost its natural ability to neutralize acids produced by greenhouse gases. It’s promising, Subhas said, because it has the potential to lock away carbon permanently.

“Ocean alkalinity enhancement does have the potential to reach sort of gigatons per year of carbon removal, which is the scale at which you would need to supplement emissions reductions,” Subhas said. “Once the alkalinity is dissolved in seawater, it reacts with carbon dioxide and forms bicarbonate—essentially dissolved baking soda. That bicarbonate is one of the most stable forms of carbon in the ocean, and it can stay locked away for tens of thousands, even hundreds of thousands of years.”

But it will be a long time before this could happen at the magnitude needed to mitigate climate change.

According to Wil Burns, co-director of the Institute for Responsible Carbon Removal at American University, between 6 and 10 gigatons of carbon need to be removed from the atmosphere annually by 2050 in order to meet the Paris Agreement climate target. “It’s a titanic task,” he said.

Most marine carbon dioxide removal initiatives, including those involving OAE, are still in a nascent stage.

“We’re really far from having any of these technologies be mature,” said Lisa Levin, an oceanographer and professor at the Scripps Institution of Oceanography at the University of California San Diego, who spoke on a panel at the United Nations Ocean Conference in June about the potential environmental risks of mining and carbon dioxide removal on deep-sea ecosystems. “We’re looking at a decade until any serious, large-scale marine carbon removal is going to be able to happen—or more.”

“In the meantime, everybody acknowledges that what we have to do is to reduce emissions, right, and not rely on taking carbon out of the atmosphere,” she said.

Marine carbon dioxide removal

So far, most carbon removal efforts have centered on land-based strategies, such as planting trees, restoring soils, and building machines that capture carbon dioxide directly from the air. Increasingly, researchers are exploring whether the oceans might help.

“Looking at the oceans makes a lot of sense when it comes to carbon removal, because the oceans sequester 70 times more CO2 than terrestrial sources,” Burns said. What if it can hold more?

That question is drawing growing attention, not only from scientists. In recent years, a wave of private companies have started piloting various methods of removing carbon from the oceans.

“It’s really the private sector that’s pushing the scaling of this very quickly,” Subhas said. In the US and Canada, he said, there are at least four companies piloting varied ocean alkalinity enhancement techniques.

Last year, Ebb Carbon, a California-based startup focused on marine carbon dioxide removal, signed a deal with Microsoft to remove up to 350,000 metric tons of CO2 over the next decade using an ocean alkalinity enhancement process that splits seawater into acidic and alkaline streams. The alkaline stream is then returned to the sea where it reacts with CO2 and stores it as bicarbonate, enabling the ocean to absorb more carbon dioxide from the atmosphere. In return, Microsoft will purchase carbon removal credits from the startup.

Another company called Vesta, which has headquarters in San Francisco, is using an approach called Coastal Carbon Capture. This involves adding finely ground olivine—a naturally occurring olive-green colored mineral—to sandy beaches. From there, ocean tides and waves carry it into the sea. Olivine reacts quickly with seawater in a process known as enhanced weathering, increasing ocean alkalinity. The company piloted one of their projects in Duck, North Carolina, last year where it estimated approximately 5,000 metric tons of carbon dioxide would be removed through coastal carbon capture after accounting for project emissions, according to its website.

But these efforts are not without risk, AU’s Burns said. “We have to proceed in an extremely precautionary manner,” he said.

Some scientists are concerned that OAE initiatives that involve olivine, which contains heavy metals like nickel and chromium, may harm marine life, he said. Another concern is that the olivine could cloud certain ocean areas and block light from penetrating to deeper depths. If too much alkalinity is introduced too fast in concentrated areas, he said, some animals might not be able to adjust.

Other marine carbon dioxide removal projects are using other methods besides OAE. Some involve adding iron to the ocean to stimulate growth in microscopic plants called phytoplankton, which absorb carbon dioxide through photosynthesis. Others include the cultivation of large-scale farms of kelp and seaweed, which also absorb carbon dioxide through photosynthesis. The marine plants can then be sunk in the deep ocean to store the carbon they absorbed.

In 2023, researchers from Woods Hole Oceanographic Institution conducted their first OAE-related field experiment from the 90-foot research vessel R/V Connecticut south of Massachusetts. As part of this first experiment, nontoxic water tracer dye was released into the ocean. Researchers tracked its movement through the water for 72 hours to model the dispersion of a plume of alkalinity over time.

Credit: Woods Hole Oceanographic Institution

In 2023, researchers from Woods Hole Oceanographic Institution conducted their first OAE-related field experiment from the 90-foot research vessel R/V Connecticut south of Massachusetts. As part of this first experiment, nontoxic water tracer dye was released into the ocean. Researchers tracked its movement through the water for 72 hours to model the dispersion of a plume of alkalinity over time. Credit: Woods Hole Oceanographic Institution

One technique that has not yet been tried, but may be piloted in the future, according to the science-based conservation nonprofit Ocean Visions, would employ new technology to accelerate the ocean’s natural process of transferring surface water and carbon to the deep ocean. That’s called artificial downwelling. In a reverse process—artificial upwelling—cooler, nutrient-rich waters from the deep ocean would be pumped to the surface to spur phytoplankton growth.

So far, UC San Diego’s Levin said she is not convinced that these trials will lead to impactful carbon removal.

“I do not think the ocean is ever going to be a really large part of that solution,” she said. However, she added, “It might be part of the storage solution. Right now, people are looking at injecting carbon dioxide that’s removed from industry activities on land and transporting it to the ocean and injecting it into basalt.”

Levin said she’s also worried that we don’t know enough yet about the consequences of altering natural ocean processes.

“I am concerned about how many field trials would be required to actually understand what would happen, and whether we could truly understand the environmental risk of a fully scaled-up operation,” she said.

The experiment

Most marine carbon dioxide removal projects that have kicked off already are significantly larger in scale than the LOC-NESS experiment, which Subhas estimates will remove around 50 tons of CO2.

But, he emphasized, the goal of this project is not to compete in size or scale. He said the aim is to provide independent academic research that can help guide and inform the future of this industry and ensure it does not have negative repercussions on the marine environment.

There is some concern, he said, that commercial entities may pursue large-scale OAE initiatives to capitalize on the growing voluntary carbon market without first conducting adequate testing for safety and efficacy. Unlike those initiatives, there is no profit to be made from LOC-NESS. No carbon credits will be sold, Subhas said.

The project is funded by a collection of government and philanthropic sources, including the National Oceanic and Atmospheric Administration and the Carbon to Sea Initiative, a nonprofit that brings funders and scientists together to support marine carbon dioxide removal research and technology.

“We really feel like it’s necessary for the scientific community to be delivering transparent, trusted, and rigorous science to evaluate these things as these activities are currently happening and scaling in the ocean by the private sector,” Subhas said.

The LOC-NESS field trial in Wilkinson Basin will be the first “academic only” OAE experiment conducted from a ship in US waters. It is also the first of its kind to receive a permit from the Environmental Protection Agency under the Marine Protection, Research, and Sanctuaries Act.

“There’s no research in the past or planned that gets even close to providing a learning opportunity that this research is providing for OAE in the pelagic environment,” said Carbon to Sea Initiative’s Antonius Gagern, referring to the open sea experiment.

The permit was granted in April after a year of consultations between the EPA and other federal agencies.

During the process’ public comment periods, commenters expressed concerns about the potential impact on marine life, including the critically endangered North Atlantic right whales, small crustaceans that they eat called copepods, and larvae for the commercially important squid and mackerel fisheries. In a written response to some of these comments, the EPA stated that the small-scale project “demonstrates scientific rigor” and is “not expected to significantly affect human health, the marine environment, or other uses of the ocean.”

Subhas and his interdisciplinary team of chemists, biologists, engineers, and physicists from Woods Hole have spent the last few years planning this experiment and conducting a series of trials at their lab on Cape Cod to ensure they can safely execute and effectively monitor the results of the open-water test they will conduct this summer in the Gulf of Maine.

They specifically tested the effects of sodium hydroxide—an alkaline substance also known as lye or caustic soda—on marine microbes, phytoplankton, and copepods, a crucial food source for many marine species in the region in addition to the right whales. “We chose sodium hydroxide because it’s incredibly pure,” Subhas said. It’s widely used in the US to reduce acidity in drinking water.

It also helps counter ocean acidification, according to Subhas. “It’s like Tums for the ocean,” he said.

Ocean acidification occurs when the ocean absorbs excess carbon dioxide, causing its pH to drop. This makes it harder for corals, krill, and shellfish like oysters and clams to develop their hard calcium carbonate shells or skeletons.

This month, the team plans to release 50 tons of sodium hydroxide into a designated area of the Wilkinson Basin from the back of one of two research vessels participating in the LOC-NESS operation.

The basin is an ideal test site, according to Subhas, because there is little presence of phytoplankton, zooplankton, commercial fish larvae, and endangered species, including some whales, during this season. Still, as a precautionary measure, Woods Hole has contracted a protected species observer to keep a look out for marine species and mitigate potential harm if they are spotted. That person will be on board as the vessel travels to and from the field trial site, including while the team releases the sodium hydroxide into the ocean.

The alkaline substance will be dispersed over four to 12 hours off the back of one of the research vessels, along with the nontoxic fluorescent red water tracer dye called rhodamine. The dye will help track the location and spread of the sodium hydroxide once released into the ocean, and the vessel’s wake will help mix the solution in with the ocean water.

After about an hour, Subhas said, it will form into a “pinkish” patch of water that can be picked up on satellites. “We’re going to be taking pictures from space and looking at how this patch sort of evolves, dilutes, and stretches and disperses over time.”

For a week after that, scientists aboard the vessels will take rotating shifts to collect data around the clock. They will deploy drones and analyze over 20 types of samples from the research vessel to monitor how the surrounding waters and marine life respond to the experiment. They’ll track changes in ocean chemistry, nutrient levels, plankton populations and water clarity, while also measuring acidity and dissolved CO2.

In March, the team did a large-scale dry run of the dispersal at an open air testing facility on a naval base in New Jersey. According to Subhas, the trial demonstrated their ability to safely and effectively deliver alkalinity to surface seawater.

“The next step is being able to measure the carbon uptake from seawater—from the atmosphere into seawater,” he said. That is a slower process. He said he expects to have some preliminary results on carbon uptake, as well as environmental impacts, early next year.

This story originally appeared on Inside Climate News.

Photo of Inside Climate News

Experiment will attempt to counter climate change by altering ocean Read More »

frogfish-reveals-how-it-evolved-the-“fishing-rod”-on-its-head

Frogfish reveals how it evolved the “fishing rod” on its head

In most bony fish, or teleosts, motor neurons for fins are found on the sides (ventrolateral zone) of the underside (ventral horn) of the spinal cord. The motor neurons controlling the illicium of frogfish are in their own cluster and located in the dorsolateral zone. In fish, this is unusual.

“The peculiar location of fishing motor neurons, with little doubt, is linked with the specialization of the illicium serving fishing behavior,” the team said in a study recently published in the Journal of Comparative Neurology.

Fishing for answers

So what does this have to do with evolution? The white-spotted pygmy filefish might look nothing like a frogfish and has no built-in fishing lure, but it is still a related species and can possibly tell us something.

While the first dorsal fin of the filefish doesn’t really move—it is thought that its main purpose is to scare off predators by looking menacing—there are still motor neurons that control it. Motor neurons for the first dorsal fin of filefish were found in the same location as motor neurons for the second, third and fourth dorsal fins in frogfish. In frogfish, these fins also do not move much while swimming, but can appear threatening to a predator.

If the same types of motor neurons control non-moving fins in both species, the frogfish has something extra when it comes to the function and location of motor neurons controlling the illicium.

Yamamoto thinks the unique group of fishing motor neurons found in frogfish suggests that, as a result of evolution, “the motor neurons for the illicium [became] segregated from other motor neurons” to end up in their own distinct cluster away from motor neurons controlling other fins, as he said in the study.

What exactly caused the functional and locational shift of motor neurons that give the frogfish’s illicium its function is still a mystery. How the brain influences their fishing behavior is another area that needs to be investigated.

While Yamamoto and his team speculate that specific regions of the brain send messages to the fishing motor neurons, they do not yet know which regions are involved, and say that more studies need to be carried out on other species of fish and the groups of motor neurons that power each of their dorsal fins.

In the meantime, the frogfish will continue being its freaky self.

Journal of Comparative Neurology, 2024. DOI: 10.1002/cne.25674

Frogfish reveals how it evolved the “fishing rod” on its head Read More »

otherworldly-mini-yellowstone-found-in-the-deep-sea

Otherworldly mini-Yellowstone found in the deep sea

Follow the crabs —

We’ve known about deep ocean vents for a while, but it’s still hard to find them.

A large collection of white crabs arrayed across rocks on the bottom of the ocean.

Enlarge / “Leading us like breadcrumbs…” A trail of squat lobsters helped researchers locate previously unknown hydrothermal vents. The hydrothermal vents create chemosynthetic ecosystems, so in areas that are mostly barren of life, the appearance of larger animals can be an indicator of vents nearby.

Spectacular scenery, from lush rainforests to towering mountain ranges, dots the surface of our planet. But some of Earth’s most iconic landmarks––ones that may harbor clues to the origin of life on Earth and possibly elsewhere––lay hidden at the bottom of the ocean. Scientists recently found one such treasure in Ecuadorian waters: a submerged mini Yellowstone called Sendero del Cangrejo.

This hazy alien realm simmers in the deep sea in an area called the Western Galápagos Spreading Center––an underwater mountain range where tectonic plates are slowly moving away from each other. Magma wells up from Earth’s mantle here to create new oceanic crust in a process that created the Galápagos Islands and smaller underwater features, like hydrothermal vents. These vents, which pump heated, mineral-rich water into the ocean in billowing plumes, may offer clues to the origin of life on Earth. Studying Earth’s hydrothermal vents could also offer a gateway to finding life, or at least its building blocks, on other worlds.

The newly discovered Sendero del Cangrejo contains a chain of hydrothermal vents that spans nearly two football fields. It hosts hot springs and geyser chimneys that support an array of creatures, from giant, spaghetti-like tube worms to alabaster Galatheid crabs.

The crabs, also known as squat lobsters, helped guide researchers to Sendero del Cangrejo. Ecuadorian observers chose the site’s name, which translates to “Trail of the Crabs,” in their honor.

“It did feel like the squat lobsters were leading us like breadcrumbs, like we were Hansel and Gretel, to the actual vent site,” said Hayley Drennon, a senior research assistant at Columbia University’s Lamont-Doherty Earth Observatory, who participated in the expedition.

The Iguanas Vent Field, where the team did some sampling.

Enlarge / The Iguanas Vent Field, where the team did some sampling.

The joint American and Ecuadorian research team set sail aboard the Schmidt Ocean Institute’s Falkor (too) research vessel in mid-August in search of new hydrothermal vents. They did some mapping and sampling on the way to their target location, about 300 miles off the west coast of the Galápagos.

The team used a ‘Tow-Yo’ technique to gather and transmit real-time data to the crew aboard the ship. “We lowered sensors attached to a long wire to the seafloor, and then towed the wire up and down like a yo-yo,” explained Roxanne Beinart, an associate professor at the University of Rhode Island and the expedition’s chief scientist. “This process allowed us to monitor changes in temperature, water clarity, and chemical composition to help pinpoint potential hydrothermal vent locations.”

When they reached a region that seemed promising, they deployed the remotely operated vehicle SuBastian for a better look. Less than 24 hours later, the team began seeing more and more Galatheid crabs, which they followed until they found the vents.

The crabs were particularly useful guides since the vent fluids there are clear, unlike “black smokers” that create easy-to-see plumes. SuBastian explored the area for about 43 hours straight in the robot’s longest dive to date.

But the true discovery process spanned decades. Researchers have known for nearly 20 years that the area was likely home to hydrothermal activity thanks to chemical signals measured in 2005. About a decade later, teams ventured out again and collected animal samples. Now, due to the Schmidt Ocean Institute’s recent expedition, scientists have the most comprehensive data set ever for this location. It includes chemical, geological, and biological data, along with the first high-temperature water samples.

“It’s not uncommon for an actual discovery like this to take decades,” said Jill McDermott, an associate professor at Lehigh University and the expedition’s co-chief scientist. “The ocean is a big place, and the locations are very remote, so it takes a lot of time and logistics to get out to them.” The team will continue their research onshore to help us understand how hydrothermal vents influence our planet.

Genesis from hell?

Sendero del Cangrejo may compare to a small-scale Yellowstone in some ways, but it’s no tourist destination. It’s pitch-black since sunlight can’t reach the deep ocean floor. The crushing weight of a mile of water presses down from overhead. And the vents are hot and toxic. Some of them clocked in at 290º C (550º F)—nearly hot enough to melt lead.

Before scientists discovered hydrothermal vents in 1977, they assumed such extreme conditions would preclude the possibility of life. Yet that trailblazing team saw multiple species thriving, including white clams that guided them to the vents the same way the Galatheid crabs led the modern researchers to Sendero del Cangrejo.

A series of seafloor photos shows the sudden appearance of live white clams that led scientists to find hydrothermal vents for the first time.

A series of seafloor photos shows the sudden appearance of live white clams that led scientists to find hydrothermal vents for the first time.

Before the 1977 find, no one knew life could survive in such a hostile place. Now, scientists know there are microbes called thermophiles that can only live in high temperatures (up to about 120º C, or 250º F).

Bacteria that surround hydrothermal vents don’t eat other organisms or create energy from sunlight like plants do. Instead, they produce energy using chemicals like methane or hydrogen sulfide that emanate from the vents. This process, called chemosynthesis, was first identified through the characterization of organisms discovered at these vents. Chemosynthetic bacteria are the backbone of hydrothermal vent ecosystems, serving as a nutrition source for higher organisms.

Some researchers suggest life on Earth may have originated near hydrothermal vents due to their unique chemical and energy-rich conditions. While the proposal remains unproven, the discovery of chemosynthesis opened our eyes to new places that could host life.

The possibility of chemosynthetic creatures diminishes the significance of so-called habitable zones around stars, which describe the orbital distances between which surface water can remain liquid on a planet or moon. The habitable zone in our own Solar System extends from about Venus’ orbit out nearly to Mars’.

NASA’s Europa Clipper mission is set to launch late next year to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life. It’s a lot colder out there, well beyond our Solar System’s habitable zone, but scientists think Europa is internally heated. It experiences strong tidal forces from Jupiter’s gravity, which could create hydrothermal activity on the moon’s ocean floor.

Several other moons in our Solar System also host subsurface oceans and experience the same tidal heating that could potentially create habitable conditions. By exploring Earth’s hydrothermal vents, scientists could learn more about what to look for in similar environments elsewhere in our Solar System.

“The Ocean’s Multivitamin”

While hydrothermal vents are relatively new to science, they’re certainly not new to our planet. “Vents have been active since Earth’s oceans first formed,” McDermott said. “They’ve been present in our oceans for as long as we’ve had them, so about 3 billion years.”

During that time, they’ve likely transformed our planet’s chemistry and geology by cycling chemicals and minerals from Earth’s crust throughout the ocean.

“All living things on Earth need minerals and elements that they get from the crust,” said Peter Girguis, a professor at Harvard University, who participated in the expedition. “It’s no exaggeration to say that all life on earth is inextricably tied to the rocks upon which we live and the geological processes occurring deep inside the planet…it’s like the ocean’s multivitamin.”

But the full extent of the impact hydrothermal vents have on the planet remains unknown. In the nearly 50 years since hydrothermal vents were first discovered, scientists have uncovered hundreds more spread around the globe. Yet no one knows how many remain unidentified; there are likely thousands more vents hidden in the deep. Detailed studies, like those the expedition scientists are continuing onshore, could help us understand how hydrothermal activity influences the ocean.

ROV SuBastian takes water and chemical samples from a black smoker hydrothermal vent in the Iguanas Vent Field, Galapagos Islands.

Enlarge / ROV SuBastian takes water and chemical samples from a black smoker hydrothermal vent in the Iguanas Vent Field, Galapagos Islands.

The team’s immediate observations offer a good starting point for their continued scientific sleuthing.

“I actually expected to find denser animal populations in some places,” Beinart said.

McDermott thinks that could be linked to the composition of the vent fluids. “Several of the vents were clear—not very particle-rich,” she said. “They’re probably lower in minerals, but we’re not sure why.” Now, the team will measure different metal levels in water samples from the vent fluids to figure out why they’re low in minerals and whether that has influenced the animals the vents host.

Researchers are learning more about hydrothermal vents every day, but many mysteries remain, such as the eventual influence ocean acidification could have on vents. As they seek answers, they’re sure to find more questions and open up new avenues of scientific exploration.

Ashley writes about space as a contractor for NASA’s Goddard Space Flight Center by day and freelances as an environmental writer. She holds a master’s degree in space studies from the University of North Dakota and is finishing a master’s in science writing through The Johns Hopkins University. She writes most of her articles with one of her toddlers on her lap.

Otherworldly mini-Yellowstone found in the deep sea Read More »