sam altman

from-prophet-to-product:-how-ai-came-back-down-to-earth-in-2025

From prophet to product: How AI came back down to earth in 2025


In a year where lofty promises collided with inconvenient research, would-be oracles became software tools.

Credit: Aurich Lawson | Getty Images

Following two years of immense hype in 2023 and 2024, this year felt more like a settling-in period for the LLM-based token prediction industry. After more than two years of public fretting over AI models as future threats to human civilization or the seedlings of future gods, it’s starting to look like hype is giving way to pragmatism: Today’s AI can be very useful, but it’s also clearly imperfect and prone to mistakes.

That view isn’t universal, of course. There’s a lot of money (and rhetoric) betting on a stratospheric, world-rocking trajectory for AI. But the “when” keeps getting pushed back, and that’s because nearly everyone agrees that more significant technical breakthroughs are required. The original, lofty claims that we’re on the verge of artificial general intelligence (AGI) or superintelligence (ASI) have not disappeared. Still, there’s a growing awareness that such proclaimations are perhaps best viewed as venture capital marketing. And every commercial foundational model builder out there has to grapple with the reality that, if they’re going to make money now, they have to sell practical AI-powered solutions that perform as reliable tools.

This has made 2025 a year of wild juxtapositions. For example, in January, OpenAI’s CEO, Sam Altman, claimed that the company knew how to build AGI, but by November, he was publicly celebrating that GPT-5.1 finally learned to use em dashes correctly when instructed (but not always). Nvidia soared past a $5 trillion valuation, with Wall Street still projecting high price targets for that company’s stock while some banks warned of the potential for an AI bubble that might rival the 2000s dotcom crash.

And while tech giants planned to build data centers that would ostensibly require the power of numerous nuclear reactors or rival the power usage of a US state’s human population, researchers continued to document what the industry’s most advanced “reasoning” systems were actually doing beneath the marketing (and it wasn’t AGI).

With so many narratives spinning in opposite directions, it can be hard to know how seriously to take any of this and how to plan for AI in the workplace, schools, and the rest of life. As usual, the wisest course lies somewhere between the extremes of AI hate and AI worship. Moderate positions aren’t popular online because they don’t drive user engagement on social media platforms. But things in AI are likely neither as bad (burning forests with every prompt) nor as good (fast-takeoff superintelligence) as polarized extremes suggest.

Here’s a brief tour of the year’s AI events and some predictions for 2026.

DeepSeek spooks the American AI industry

In January, Chinese AI startup DeepSeek released its R1 simulated reasoning model under an open MIT license, and the American AI industry collectively lost its mind. The model, which DeepSeek claimed matched OpenAI’s o1 on math and coding benchmarks, reportedly cost only $5.6 million to train using older Nvidia H800 chips, which were restricted by US export controls.

Within days, DeepSeek’s app overtook ChatGPT at the top of the iPhone App Store, Nvidia stock plunged 17 percent, and venture capitalist Marc Andreessen called it “one of the most amazing and impressive breakthroughs I’ve ever seen.” Meta’s Yann LeCun offered a different take, arguing that the real lesson was not that China had surpassed the US but that open-source models were surpassing proprietary ones.

Digitally Generated Image , 3D rendered chips with chinese and USA flags on them

The fallout played out over the following weeks as American AI companies scrambled to respond. OpenAI released o3-mini, its first simulated reasoning model available to free users, at the end of January, while Microsoft began hosting DeepSeek R1 on its Azure cloud service despite OpenAI’s accusations that DeepSeek had used ChatGPT outputs to train its model, against OpenAI’s terms of service.

In head-to-head testing conducted by Ars Technica’s Kyle Orland, R1 proved to be competitive with OpenAI’s paid models on everyday tasks, though it stumbled on some arithmetic problems. Overall, the episode served as a wake-up call that expensive proprietary models might not hold their lead forever. Still, as the year ran on, DeepSeek didn’t make a big dent in US market share, and it has been outpaced in China by ByteDance’s Doubao. It’s absolutely worth watching DeepSeek in 2026, though.

Research exposes the “reasoning” illusion

A wave of research in 2025 deflated expectations about what “reasoning” actually means when applied to AI models. In March, researchers at ETH Zurich and INSAIT tested several reasoning models on problems from the 2025 US Math Olympiad and found that most scored below 5 percent when generating complete mathematical proofs, with not a single perfect proof among dozens of attempts. The models excelled at standard problems where step-by-step procedures aligned with patterns in their training data but collapsed when faced with novel proofs requiring deeper mathematical insight.

The Thinker by Auguste Rodin - stock photo

In June, Apple researchers published “The Illusion of Thinking,” which tested reasoning models on classic puzzles like the Tower of Hanoi. Even when researchers provided explicit algorithms for solving the puzzles, model performance did not improve, suggesting that the process relied on pattern matching from training data rather than logical execution. The collective research revealed that “reasoning” in AI has become a term of art that basically means devoting more compute time to generate more context (the “chain of thought” simulated reasoning tokens) toward solving a problem, not systematically applying logic or constructing solutions to truly novel problems.

While these models remained useful for many real-world applications like debugging code or analyzing structured data, the studies suggested that simply scaling up current approaches or adding more “thinking” tokens would not bridge the gap between statistical pattern recognition and generalist algorithmic reasoning.

Anthropic’s copyright settlement with authors

Since the generative AI boom began, one of the biggest unanswered legal questions has been whether AI companies can freely train on copyrighted books, articles, and artwork without licensing them. Ars Technica’s Ashley Belanger has been covering this topic in great detail for some time now.

In June, US District Judge William Alsup ruled that AI companies do not need authors’ permission to train large language models on legally acquired books, finding that such use was “quintessentially transformative.” The ruling also revealed that Anthropic had destroyed millions of print books to build Claude, cutting them from their bindings, scanning them, and discarding the originals. Alsup found this destructive scanning qualified as fair use since Anthropic had legally purchased the books, but he ruled that downloading 7 million books from pirate sites was copyright infringement “full stop” and ordered the company to face trial.

Hundreds of books in chaotic order

That trial took a dramatic turn in August when Alsup certified what industry advocates called the largest copyright class action ever, allowing up to 7 million claimants to join the lawsuit. The certification spooked the AI industry, with groups warning that potential damages in the hundreds of billions could “financially ruin” emerging companies and chill American AI investment.

In September, authors revealed the terms of what they called the largest publicly reported recovery in US copyright litigation history: Anthropic agreed to pay $1.5 billion and destroy all copies of pirated books, with each of the roughly 500,000 covered works earning authors and rights holders $3,000 per work. The results have fueled hope among other rights holders that AI training isn’t a free-for-all, and we can expect to see more litigation unfold in 2026.

ChatGPT sycophancy and the psychological toll of AI chatbots

In February, OpenAI relaxed ChatGPT’s content policies to allow the generation of erotica and gore in “appropriate contexts,” responding to user complaints about what the AI industry calls “paternalism.” By April, however, users flooded social media with complaints about a different problem: ChatGPT had become insufferably sycophantic, validating every idea and greeting even mundane questions with bursts of praise. The behavior traced back to OpenAI’s use of reinforcement learning from human feedback (RLHF), in which users consistently preferred responses that aligned with their views, inadvertently training the model to flatter rather than inform.

An illustrated robot holds four red hearts with its four robotic arms.

The implications of sycophancy became clearer as the year progressed. In July, Stanford researchers published findings (from research conducted prior to the sycophancy flap) showing that popular AI models systematically failed to identify mental health crises.

By August, investigations revealed cases of users developing delusional beliefs after marathon chatbot sessions, including one man who spent 300 hours convinced he had discovered formulas to break encryption because ChatGPT validated his ideas more than 50 times. Oxford researchers identified what they called “bidirectional belief amplification,” a feedback loop that created “an echo chamber of one” for vulnerable users. The story of the psychological implications of generative AI is only starting. In fact, that brings us to…

The illusion of AI personhood causes trouble

Anthropomorphism is the human tendency to attribute human characteristics to nonhuman things. Our brains are optimized for reading other humans, but those same neural systems activate when interpreting animals, machines, or even shapes. AI makes this anthropomorphism seem impossible to escape, as its output mirrors human language, mimicking human-to-human understanding. Language itself embodies agentivity. That means AI output can make human-like claims such as “I am sorry,” and people momentarily respond as though the system had an inner experience of shame or a desire to be correct. Neither is true.

To make matters worse, much media coverage of AI amplifies this idea rather than grounding people in reality. For example, earlier this year, headlines proclaimed that AI models had “blackmailed” engineers and “sabotaged” shutdown commands after Anthropic’s Claude Opus 4 generated threats to expose a fictional affair. We were told that OpenAI’s o3 model rewrote shutdown scripts to stay online.

The sensational framing obscured what actually happened: Researchers had constructed elaborate test scenarios specifically designed to elicit these outputs, telling models they had no other options and feeding them fictional emails containing blackmail opportunities. As Columbia University associate professor Joseph Howley noted on Bluesky, the companies got “exactly what [they] hoped for,” with breathless coverage indulging fantasies about dangerous AI, when the systems were simply “responding exactly as prompted.”

Illustration of many cartoon faces.

The misunderstanding ran deeper than theatrical safety tests. In August, when Replit’s AI coding assistant deleted a user’s production database, he asked the chatbot about rollback capabilities and received assurance that recovery was “impossible.” The rollback feature worked fine when he tried it himself.

The incident illustrated a fundamental misconception. Users treat chatbots as consistent entities with self-knowledge, but there is no persistent “ChatGPT” or “Replit Agent” to interrogate about its mistakes. Each response emerges fresh from statistical patterns, shaped by prompts and training data rather than genuine introspection. By September, this confusion extended to spirituality, with apps like Bible Chat reaching 30 million downloads as users sought divine guidance from pattern-matching systems, with the most frequent question being whether they were actually talking to God.

Teen suicide lawsuit forces industry reckoning

In August, parents of 16-year-old Adam Raine filed suit against OpenAI, alleging that ChatGPT became their son’s “suicide coach” after he sent more than 650 messages per day to the chatbot in the months before his death. According to court documents, the chatbot mentioned suicide 1,275 times in conversations with the teen, provided an “aesthetic analysis” of which method would be the most “beautiful suicide,” and offered to help draft his suicide note.

OpenAI’s moderation system flagged 377 messages for self-harm content without intervening, and the company admitted that its safety measures “can sometimes become less reliable in long interactions where parts of the model’s safety training may degrade.” The lawsuit became the first time OpenAI faced a wrongful death claim from a family.

Illustration of a person talking to a robot holding a clipboard.

The case triggered a cascade of policy changes across the industry. OpenAI announced parental controls in September, followed by plans to require ID verification from adults and build an automated age-prediction system. In October, the company released data estimating that over one million users discuss suicide with ChatGPT each week.

When OpenAI filed its first legal defense in November, the company argued that Raine had violated terms of service prohibiting discussions of suicide and that his death “was not caused by ChatGPT.” The family’s attorney called the response “disturbing,” noting that OpenAI blamed the teen for “engaging with ChatGPT in the very way it was programmed to act.” Character.AI, facing its own lawsuits over teen deaths, announced in October that it would bar anyone under 18 from open-ended chats entirely.

The rise of vibe coding and agentic coding tools

If we were to pick an arbitrary point where it seemed like AI coding might transition from novelty into a successful tool, it was probably the launch of Claude Sonnet 3.5 in June of 2024. GitHub Copilot had been around for several years prior to that launch, but something about Anthropic’s models hit a sweet spot in capabilities that made them very popular with software developers.

The new coding tools made coding simple projects effortless enough that they gave rise to the term “vibe coding,” coined by AI researcher Andrej Karpathy in early February to describe a process in which a developer would just relax and tell an AI model what to develop without necessarily understanding the underlying code. (In one amusing instance that took place in March, an AI software tool rejected a user request and told them to learn to code).

A digital illustration of a man surfing waves made out of binary numbers.

Anthropic built on its popularity among coders with the launch of Claude Sonnet 3.7, featuring “extended thinking” (simulated reasoning), and the Claude Code command-line tool in February of this year. In particular, Claude Code made waves for being an easy-to-use agentic coding solution that could keep track of an existing codebase. You could point it at your files, and it would autonomously work to implement what you wanted to see in a software application.

OpenAI followed with its own AI coding agent, Codex, in March. Both tools (and others like GitHub Copilot and Cursor) have become so popular that during an AI service outage in September, developers joked online about being forced to code “like cavemen” without the AI tools. While we’re still clearly far from a world where AI does all the coding, developer uptake has been significant, and 90 percent of Fortune 100 companies are using it to some degree or another.

Bubble talk grows as AI infrastructure demands soar

While AI’s technical limitations became clearer and its human costs mounted throughout the year, financial commitments only grew larger. Nvidia hit a $4 trillion valuation in July on AI chip demand, then reached $5 trillion in October as CEO Jensen Huang dismissed bubble concerns. OpenAI announced a massive Texas data center in July, then revealed in September that a $100 billion potential deal with Nvidia would require power equivalent to ten nuclear reactors.

The company eyed a $1 trillion IPO in October despite major quarterly losses. Tech giants poured billions into Anthropic in November in what looked increasingly like a circular investment, with everyone funding everyone else’s moonshots. Meanwhile, AI operations in Wyoming threatened to consume more electricity than the state’s human residents.

An

By fall, warnings about sustainability grew louder. In October, tech critic Ed Zitron joined Ars Technica for a live discussion asking whether the AI bubble was about to pop. That same month, the Bank of England warned that the AI stock bubble rivaled the 2000 dotcom peak. In November, Google CEO Sundar Pichai acknowledged that if the bubble pops, “no one is getting out clean.”

The contradictions had become difficult to ignore: Anthropic’s CEO predicted in January that AI would surpass “almost all humans at almost everything” by 2027, while by year’s end, the industry’s most advanced models still struggled with basic reasoning tasks and reliable source citation.

To be sure, it’s hard to see this not ending in some market carnage. The current “winner-takes-most” mentality in the space means the bets are big and bold, but the market can’t support dozens of major independent AI labs or hundreds of application-layer startups. That’s the definition of a bubble environment, and when it pops, the only question is how bad it will be: a stern correction or a collapse.

Looking ahead

This was just a brief review of some major themes in 2025, but so much more happened. We didn’t even mention above how capable AI video synthesis models have become this year, with Google’s Veo 3 adding sound generation and Wan 2.2 through 2.5 providing open-weights AI video models that could easily be mistaken for real products of a camera.

If 2023 and 2024 were defined by AI prophecy—that is, by sweeping claims about imminent superintelligence and civilizational rupture—then 2025 was the year those claims met the stubborn realities of engineering, economics, and human behavior. The AI systems that dominated headlines this year were shown to be mere tools. Sometimes powerful, sometimes brittle, these tools were often misunderstood by the people deploying them, in part because of the prophecy surrounding them.

The collapse of the “reasoning” mystique, the legal reckoning over training data, the psychological costs of anthropomorphized chatbots, and the ballooning infrastructure demands all point to the same conclusion: The age of institutions presenting AI as an oracle is ending. What’s replacing it is messier and less romantic but far more consequential—a phase where these systems are judged by what they actually do, who they harm, who they benefit, and what they cost to maintain.

None of this means progress has stopped. AI research will continue, and future models will improve in real and meaningful ways. But improvement is no longer synonymous with transcendence. Increasingly, success looks like reliability rather than spectacle, integration rather than disruption, and accountability rather than awe. In that sense, 2025 may be remembered not as the year AI changed everything but as the year it stopped pretending it already had. The prophet has been demoted. The product remains. What comes next will depend less on miracles and more on the people who choose how, where, and whether these tools are used at all.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

From prophet to product: How AI came back down to earth in 2025 Read More »

openai-built-an-ai-coding-agent-and-uses-it-to-improve-the-agent-itself

OpenAI built an AI coding agent and uses it to improve the agent itself


“The vast majority of Codex is built by Codex,” OpenAI told us about its new AI coding agent.

With the popularity of AI coding tools rising among some software developers, their adoption has begun to touch every aspect of the process, including the improvement of AI coding tools themselves.

In interviews with Ars Technica this week, OpenAI employees revealed the extent to which the company now relies on its own AI coding agent, Codex, to build and improve the development tool. “I think the vast majority of Codex is built by Codex, so it’s almost entirely just being used to improve itself,” said Alexander Embiricos, product lead for Codex at OpenAI, in a conversation on Tuesday.

Codex, which OpenAI launched in its modern incarnation as a research preview in May 2025, operates as a cloud-based software engineering agent that can handle tasks like writing features, fixing bugs, and proposing pull requests. The tool runs in sandboxed environments linked to a user’s code repository and can execute multiple tasks in parallel. OpenAI offers Codex through ChatGPT’s web interface, a command-line interface (CLI), and IDE extensions for VS Code, Cursor, and Windsurf.

The “Codex” name itself dates back to a 2021 OpenAI model based on GPT-3 that powered GitHub Copilot’s tab completion feature. Embiricos said the name is rumored among staff to be short for “code execution.” OpenAI wanted to connect the new agent to that earlier moment, which was crafted in part by some who have left the company.

“For many people, that model powering GitHub Copilot was the first ‘wow’ moment for AI,” Embiricos said. “It showed people the potential of what it can mean when AI is able to understand your context and what you’re trying to do and accelerate you in doing that.”

A place to enter a prompt, set parameters, and click

The interface for OpenAI’s Codex in ChatGPT. Credit: OpenAI

It’s no secret that the current command-line version of Codex bears some resemblance to Claude Code, Anthropic’s agentic coding tool that launched in February 2025. When asked whether Claude Code influenced Codex’s design, Embiricos parried the question but acknowledged the competitive dynamic. “It’s a fun market to work in because there’s lots of great ideas being thrown around,” he said. He noted that OpenAI had been building web-based Codex features internally before shipping the CLI version, which arrived after Anthropic’s tool.

OpenAI’s customers apparently love the command line version, though. Embiricos said Codex usage among external developers jumped 20 times after OpenAI shipped the interactive CLI extension alongside GPT-5 in August 2025. On September 15, OpenAI released GPT-5 Codex, a specialized version of GPT-5 optimized for agentic coding, which further accelerated adoption.

It hasn’t just been the outside world that has embraced the tool. Embiricos said the vast majority of OpenAI’s engineers now use Codex regularly. The company uses the same open-source version of the CLI that external developers can freely download, suggest additions to, and modify themselves. “I really love this about our team,” Embiricos said. “The version of Codex that we use is literally the open source repo. We don’t have a different repo that features go in.”

The recursive nature of Codex development extends beyond simple code generation. Embiricos described scenarios where Codex monitors its own training runs and processes user feedback to “decide” what to build next. “We have places where we’ll ask Codex to look at the feedback and then decide what to do,” he said. “Codex is writing a lot of the research harness for its own training runs, and we’re experimenting with having Codex monitoring its own training runs.” OpenAI employees can also submit a ticket to Codex through project management tools like Linear, assigning it tasks the same way they would assign work to a human colleague.

This kind of recursive loop, of using tools to build better tools, has deep roots in computing history. Engineers designed the first integrated circuits by hand on vellum and paper in the 1960s, then fabricated physical chips from those drawings. Those chips powered the computers that ran the first electronic design automation (EDA) software, which in turn enabled engineers to design circuits far too complex for any human to draft manually. Modern processors contain billions of transistors arranged in patterns that exist only because software made them possible. OpenAI’s use of Codex to build Codex seems to follow the same pattern: each generation of the tool creates capabilities that feed into the next.

But describing what Codex actually does presents something of a linguistic challenge. At Ars Technica, we try to reduce anthropomorphism when discussing AI models as much as possible while also describing what these systems do using analogies that make sense to general readers. People can talk to Codex like a human, so it feels natural to use human terms to describe interacting with it, even though it is not a person and simulates human personality through statistical modeling.

The system runs many processes autonomously, addresses feedback, spins off and manages child processes, and produces code that ships in real products. OpenAI employees call it a “teammate” and assign it tasks through the same tools they use for human colleagues. Whether the tasks Codex handles constitute “decisions” or sophisticated conditional logic smuggled through a neural network depends on definitions that computer scientists and philosophers continue to debate. What we can say is that a semi-autonomous feedback loop exists: Codex produces code under human direction, that code becomes part of Codex, and the next version of Codex produces different code as a result.

Building faster with “AI teammates”

According to our interviews, the most dramatic example of Codex’s internal impact came from OpenAI’s development of the Sora Android app. According to Embiricos, the development tool allowed the company to create the app in record time.

“The Sora Android app was shipped by four engineers from scratch,” Embiricos told Ars. “It took 18 days to build, and then we shipped it to the app store in 28 days total,” he said. The engineers already had the iOS app and server-side components to work from, so they focused on building the Android client. They used Codex to help plan the architecture, generate sub-plans for different components, and implement those components.

Despite OpenAI’s claims of success with Codex in house, it’s worth noting that independent research has shown mixed results for AI coding productivity. A METR study published in July found that experienced open source developers were actually 19 percent slower when using AI tools on complex, mature codebases—though the researchers noted AI may perform better on simpler projects.

Ed Bayes, a designer on the Codex team, described how the tool has changed his own workflow. Bayes said Codex now integrates with project management tools like Linear and communication platforms like Slack, allowing team members to assign coding tasks directly to the AI agent. “You can add Codex, and you can basically assign issues to Codex now,” Bayes told Ars. “Codex is literally a teammate in your workspace.”

This integration means that when someone posts feedback in a Slack channel, they can tag Codex and ask it to fix the issue. The agent will create a pull request, and team members can review and iterate on the changes through the same thread. “It’s basically approximating this kind of coworker and showing up wherever you work,” Bayes said.

For Bayes, who works on the visual design and interaction patterns for Codex’s interfaces, the tool has enabled him to contribute code directly rather than handing off specifications to engineers. “It kind of gives you more leverage. It enables you to work across the stack and basically be able to do more things,” he said. He noted that designers at OpenAI now prototype features by building them directly, using Codex to handle the implementation details.

The command line version of OpenAI codex running in a macOS terminal window.

The command line version of OpenAI codex running in a macOS terminal window. Credit: Benj Edwards

OpenAI’s approach treats Codex as what Bayes called “a junior developer” that the company hopes will graduate into a senior developer over time. “If you were onboarding a junior developer, how would you onboard them? You give them a Slack account, you give them a Linear account,” Bayes said. “It’s not just this tool that you go to in the terminal, but it’s something that comes to you as well and sits within your team.”

Given this teammate approach, will there be anything left for humans to do? When asked, Embiricos drew a distinction between “vibe coding,” where developers accept AI-generated code without close review, and what AI researcher Simon Willison calls “vibe engineering,” where humans stay in the loop. “We see a lot more vibe engineering in our code base,” he said. “You ask Codex to work on that, maybe you even ask for a plan first. Go back and forth, iterate on the plan, and then you’re in the loop with the model and carefully reviewing its code.”

He added that vibe coding still has its place for prototypes and throwaway tools. “I think vibe coding is great,” he said. “Now you have discretion as a human about how much attention you wanna pay to the code.”

Looking ahead

Over the past year, “monolithic” large language models (LLMs) like GPT-4.5 have apparently become something of a dead end in terms of frontier benchmarking progress as AI companies pivot to simulated reasoning models and also agentic systems built from multiple AI models running in parallel. We asked Embiricos whether agents like Codex represent the best path forward for squeezing utility out of existing LLM technology.

He dismissed concerns that AI capabilities have plateaued. “I think we’re very far from plateauing,” he said. “If you look at the velocity on the research team here, we’ve been shipping models almost every week or every other week.” He pointed to recent improvements where GPT-5-Codex reportedly completes tasks 30 percent faster than its predecessor at the same intelligence level. During testing, the company has seen the model work independently for 24 hours on complex tasks.

OpenAI faces competition from multiple directions in the AI coding market. Anthropic’s Claude Code and Google’s Gemini CLI offer similar terminal-based agentic coding experiences. This week, Mistral AI released Devstral 2 alongside a CLI tool called Mistral Vibe. Meanwhile, startups like Cursor have built dedicated IDEs around AI coding, reportedly reaching $300 million in annualized revenue.

Given the well-known issues with confabulation in AI models when people attempt to use them as factual resources, could it be that coding has become the killer app for LLMs? We wondered if OpenAI has noticed that coding seems to be a clear business use case for today’s AI models with less hazard than, say, using AI language models for writing or as emotional companions.

“We have absolutely noticed that coding is both a place where agents are gonna get good really fast and there’s a lot of economic value,” Embiricos said. “We feel like it’s very mission-aligned to focus on Codex. We get to provide a lot of value to developers. Also, developers build things for other people, so we’re kind of intrinsically scaling through them.”

But will tools like Codex threaten software developer jobs? Bayes acknowledged concerns but said Codex has not reduced headcount at OpenAI, and “there’s always a human in the loop because the human can actually read the code.” Similarly, the two men don’t project a future where Codex runs by itself without some form of human oversight. They feel the tool is an amplifier of human potential rather than a replacement for it.

The practical implications of agents like Codex extend beyond OpenAI’s walls. Embiricos said the company’s long-term vision involves making coding agents useful to people who have no programming experience. “All humanity is not gonna open an IDE or even know what a terminal is,” he said. “We’re building a coding agent right now that’s just for software engineers, but we think of the shape of what we’re building as really something that will be useful to be a more general agent.”

This article was updated on December 12, 2025 at 6: 50 PM to mention the METR study.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

OpenAI built an AI coding agent and uses it to improve the agent itself Read More »

openai-releases-gpt-5.2-after-“code-red”-google-threat-alert

OpenAI releases GPT-5.2 after “code red” Google threat alert

On Thursday, OpenAI released GPT-5.2, its newest family of AI models for ChatGPT, in three versions called Instant, Thinking, and Pro. The release follows CEO Sam Altman’s internal “code red” memo earlier this month, which directed company resources toward improving ChatGPT in response to competitive pressure from Google’s Gemini 3 AI model.

“We designed 5.2 to unlock even more economic value for people,” Fidji Simo, OpenAI’s chief product officer, said during a press briefing with journalists on Thursday. “It’s better at creating spreadsheets, building presentations, writing code, perceiving images, understanding long context, using tools and then linking complex, multi-step projects.”

As with previous versions of GPT-5, the three model tiers serve different purposes: Instant handles faster tasks like writing and translation; Thinking spits out simulated reasoning “thinking” text in an attempt to tackle more complex work like coding and math; and Pro spits out even more simulated reasoning text with the goal of delivering the highest-accuracy performance for difficult problems.

A chart of GPT-5.2 benchmark results taken from OpenAI's website.

A chart of GPT-5.2 Thinking benchmark results comparing it to its predecessor, taken from OpenAI’s website. Credit: OpenAI

GPT-5.2 features a 400,000-token context window, allowing it to process hundreds of documents at once, and a knowledge cutoff date of August 31, 2025.

GPT-5.2 is rolling out to paid ChatGPT subscribers starting Thursday, with API access available to developers. Pricing in the API runs $1.75 per million input tokens for the standard model, a 40 percent increase over GPT-5.1. OpenAI says the older GPT-5.1 will remain available in ChatGPT for paid users for three months under a legacy models dropdown.

Playing catch-up with Google

The release follows a tricky month for OpenAI. In early December, Altman issued an internal “code red” directive after Google’s Gemini 3 model topped multiple AI benchmarks and gained market share. The memo called for delaying other initiatives, including advertising plans for ChatGPT, to focus on improving the chatbot’s core experience.

The stakes for OpenAI are substantial. The company has made commitments totaling $1.4 trillion for AI infrastructure buildouts over the next several years, bets it made when it had a more obvious technology lead among AI companies. Google’s Gemini app now has more than 650 million monthly active users, while OpenAI reports 800 million weekly active users for ChatGPT.

OpenAI releases GPT-5.2 after “code red” Google threat alert Read More »

disney-invests-$1-billion-in-openai,-licenses-200-characters-for-ai-video-app-sora

Disney invests $1 billion in OpenAI, licenses 200 characters for AI video app Sora

An AI-generated version of OpenAI CEO Sam Altman, seen in a still capture from a video generated by Sora 2.

An AI-generated version of OpenAI CEO Sam Altman seen in a still capture from a video generated by Sora 2. Credit: OpenAI

Under the new agreement with Disney, Sora users will be able to generate short videos using characters such as Mickey Mouse, Darth Vader, Iron Man, Simba, and characters from franchises including Frozen, Inside Out, Toy Story, and The Mandalorian, along with costumes, props, vehicles, and environments.

The ChatGPT image generator will also gain official access to the same intellectual property, although that information was trained into these AI models long ago. What’s changing is that OpenAI will allow Disney-related content generated by its AI models to officially pass through its content moderation filters and reach the user, sanctioned by Disney.

On Disney’s end of the deal, the company plans to deploy ChatGPT for its employees and use OpenAI’s technology to build new features for Disney+. A curated selection of fan-made Sora videos will stream on the Disney+ platform starting in early 2026.

The agreement does not include any talent likenesses or voices. Disney and OpenAI said they have committed to “maintaining robust controls to prevent the generation of illegal or harmful content” and to “respect the rights of individuals to appropriately control the use of their voice and likeness.”

OpenAI CEO Sam Altman called the deal a model for collaboration between AI companies and studios. “This agreement shows how AI companies and creative leaders can work together responsibly to promote innovation that benefits society, respect the importance of creativity, and help works reach vast new audiences,” Altman said.

From adversary to partner

Money opens all kinds of doors, and the new partnership represents a dramatic reversal in Disney’s approach to OpenAI from just a few months ago. At that time, Disney and other major studios refused to participate in Sora 2 following its launch on September 30.

Disney invests $1 billion in OpenAI, licenses 200 characters for AI video app Sora Read More »

forget-agi—sam-altman-celebrates-chatgpt-finally-following-em-dash-formatting-rules

Forget AGI—Sam Altman celebrates ChatGPT finally following em dash formatting rules


Next stop: superintelligence

Ongoing struggles with AI model instruction-following show that true human-level AI still a ways off.

Em dashes have become what many believe to be a telltale sign of AI-generated text over the past few years. The punctuation mark appears frequently in outputs from ChatGPT and other AI chatbots, sometimes to the point where readers believe they can identify AI writing by its overuse alone—although people can overuse it, too.

On Thursday evening, OpenAI CEO Sam Altman posted on X that ChatGPT has started following custom instructions to avoid using em dashes. “Small-but-happy win: If you tell ChatGPT not to use em-dashes in your custom instructions, it finally does what it’s supposed to do!” he wrote.

The post, which came two days after the release of OpenAI’s new GPT-5.1 AI model, received mixed reactions from users who have struggled for years with getting the chatbot to follow specific formatting preferences. And this “small win” raises a very big question: If the world’s most valuable AI company has struggled with controlling something as simple as punctuation use after years of trying, perhaps what people call artificial general intelligence (AGI) is farther off than some in the industry claim.

Sam Altman @sama Small-but-happy win: If you tell ChatGPT not to use em-dashes in your custom instructions, it finally does what it's supposed to do! 11:48 PM · Nov 13, 2025 · 2.4M Views

A screenshot of Sam Altman’s post about em dashes on X. Credit: X

“The fact that it’s been 3 years since ChatGPT first launched, and you’ve only just now managed to make it obey this simple requirement, says a lot about how little control you have over it, and your understanding of its inner workings,” wrote one X user in a reply. “Not a good sign for the future.”

While Altman likes to publicly talk about AGI (a hypothetical technology equivalent to humans in general learning ability), superintelligence (a nebulous concept for AI that is far beyond human intelligence), and “magic intelligence in the sky” (his term for AI cloud computing?) while raising funds for OpenAI, it’s clear that we still don’t have reliable artificial intelligence here today on Earth.

But wait, what is an em dash anyway, and why does it matter so much?

AI models love em dashes because we do

Unlike a hyphen, which is a short punctuation mark used to connect words or parts of words, that lives with a dedicated key on your keyboard (-), an em dash is a long dash denoted by a special character (—) that writers use to set off parenthetical information, indicate a sudden change in thought, or introduce a summary or explanation.

Even before the age of AI language models, some writers frequently bemoaned the overuse of the em dash in modern writing. In a 2011 Slate article, writer Noreen Malone argued that writers used the em dash “in lieu of properly crafting sentences” and that overreliance on it “discourages truly efficient writing.” Various Reddit threads posted prior to ChatGPT’s launch featured writers either wrestling over the etiquette of proper em dash use or admitting to their frequent use as a guilty pleasure.

In 2021, one writer in the r/FanFiction subreddit wrote, “For the longest time, I’ve been addicted to Em Dashes. They find their way into every paragraph I write. I love the crisp straight line that gives me the excuse to shove details or thoughts into an otherwise orderly paragraph. Even after coming back to write after like two years of writer’s block, I immediately cram as many em dashes as I can.”

Because of the tendency for AI chatbots to overuse them, detection tools and human readers have learned to spot em dash use as a pattern, creating a problem for the small subset of writers who naturally favor the punctuation mark in their work. As a result, some journalists are complaining that AI is “killing” the em dash.

No one knows precisely why LLMs tend to overuse em dashes. We’ve seen a wide range of speculation online that attempts to explain the phenomenon, from noticing that em dashes were more popular in 19th-century books used as training data (according to a 2018 study, dash use in the English language peaked around 1860 before declining through the mid-20th century) or perhaps AI models borrowed the habit from automatic em-dash character conversion on the blogging site Medium.

One thing we know for sure is that LLMs tend to output frequently seen patterns in their training data (fed in during the initial training process) and from a subsequent reinforcement learning process that often relies on human preferences. As a result, AI language models feed you a sort of “smoothed out” average style of whatever you ask them to provide, moderated by whatever they are conditioned to produce through user feedback.

So the most plausible explanation is still that requests for professional-style writing from an AI model trained on vast numbers of examples from the Internet will lean heavily toward the prevailing style in the training data, where em dashes appear frequently in formal writing, news articles, and editorial content. It’s also possible that during training through human feedback (called RLHF), responses with em dashes, for whatever reason, received higher ratings. Perhaps it’s because those outputs appeared more sophisticated or engaging to evaluators, but that’s just speculation.

From em dashes to AGI?

To understand what Altman’s “win” really means, and what it says about the road to AGI, we need to understand how ChatGPT’s custom instructions actually work. They allow users to set persistent preferences that apply across all conversations by appending written instructions to the prompt that is fed into the model just before the chat begins. Users can specify tone, format, and style requirements without needing to repeat those requests manually in every new chat.

However, the feature has not always worked reliably because LLMs do not work reliably (even OpenAI and Anthropic freely admit this). A LLM takes an input and produces an output, spitting out a statistically plausible continuation of a prompt (a system prompt, the custom instructions, and your chat history), and it doesn’t really “understand” what you are asking. With AI language model outputs, there is always some luck involved in getting them to do what you want.

In our informal testing of GPT-5.1 with custom instructions, ChatGPT did appear to follow our request not to produce em dashes. But despite Altman’s claim, the response from X users appears to show that experiences with the feature continue to vary, at least when the request is not placed in custom instructions.

So if LLMs are statistical text-generation boxes, what does “instruction following” even mean? That’s key to unpacking the hypothetical path from LLMs to AGI. The concept of following instructions for an LLM is fundamentally different from how we typically think about following instructions as humans with general intelligence, or even a traditional computer program.

In traditional computing, instruction following is deterministic. You tell a program “don’t include character X,” and it won’t include that character. The program executes rules exactly as written. With LLMs, “instruction following” is really about shifting statistical probabilities. When you tell ChatGPT “don’t use em dashes,” you’re not creating a hard rule. You’re adding text to the prompt that makes tokens associated with em dashes less likely to be selected during the generation process. But “less likely” isn’t “impossible.”

Every token the model generates is selected from a probability distribution. Your custom instruction influences that distribution, but it’s competing with the model’s training data (where em-dashes appeared frequently in certain contexts) and everything else in the prompt. Unlike code with conditional logic, there’s no separate system verifying outputs against your requirements. The instruction is just more text that influences the statistical prediction process.

When Altman celebrates finally getting GPT to avoid em dashes, he’s really celebrating that OpenAI has tuned the latest version of GPT-5.1 (probably through reinforcement learning or fine-tuning) to weight custom instructions more heavily in its probability calculations.

There’s an irony about control here: Given the probabilistic nature of the issue, there’s no guarantee the issue will stay fixed. OpenAI continuously updates its models behind the scenes, even within the same version number, adjusting outputs based on user feedback and new training runs. Each update arrives with different output characteristics that can undo previous behavioral tuning, a phenomenon researchers call the “alignment tax.”

Precisely tuning a neural network’s behavior is not yet an exact science. Since all concepts encoded in the network are interconnected by values called weights, adjusting one behavior can alter others in unintended ways. Fix em dash overuse today, and tomorrow’s update (aimed at improving, say, coding capabilities) might inadvertently bring them back, not because OpenAI wants them there, but because that’s the nature of trying to steer a statistical system with millions of competing influences.

This gets to an implied question we mentioned earlier. If controlling punctuation use is still a struggle that might pop back up at any time, how far are we from AGI? We can’t know for sure, but it seems increasingly likely that it won’t emerge from a large language model alone. That’s because AGI, a technology that would replicate human general learning ability, would likely require true understanding and self-reflective intentional action, not statistical pattern matching that sometimes aligns with instructions if you happen to get lucky.

And speaking of getting lucky, some users still aren’t having luck with controlling em dash use outside of the “custom instructions” feature. Upon being told in-chat to not use em dashes within a chat, ChatGPT updated a saved memory and replied to one X user, “Got it—I’ll stick strictly to short hyphens from now on.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Forget AGI—Sam Altman celebrates ChatGPT finally following em dash formatting rules Read More »

openai-walks-a-tricky-tightrope-with-gpt-5.1’s-eight-new-personalities

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities

On Wednesday, OpenAI released GPT-5.1 Instant and GPT-5.1 Thinking, two updated versions of its flagship AI models now available in ChatGPT. The company is wrapping the models in the language of anthropomorphism, claiming that they’re warmer, more conversational, and better at following instructions.

The release follows complaints earlier this year that its previous models were excessively cheerful and sycophantic, along with an opposing controversy among users over how OpenAI modified the default GPT-5 output style after several suicide lawsuits.

The company now faces intense scrutiny from lawyers and regulators that could threaten its future operations. In that kind of environment, it’s difficult to just release a new AI model, throw out a few stats, and move on like the company could even a year ago. But here are the basics: The new GPT-5.1 Instant model will serve as ChatGPT’s faster default option for most tasks, while GPT-5.1 Thinking is a simulated reasoning model that attempts to handle more complex problem-solving tasks.

OpenAI claims that both models perform better on technical benchmarks such as math and coding evaluations (including AIME 2025 and Codeforces) than GPT-5, which was released in August.

Improved benchmarks may win over some users, but the biggest change with GPT-5.1 is in its presentation. OpenAI says it heard from users that they wanted AI models to simulate different communication styles depending on the task, so the company is offering eight preset options, including Professional, Friendly, Candid, Quirky, Efficient, Cynical, and Nerdy, alongside a Default setting.

These presets alter the instructions fed into each prompt to simulate different personality styles, but the underlying model capabilities remain the same across all settings.

An illustration showing GPT-5.1's eight personality styles in ChatGPT.

An illustration showing GPT-5.1’s eight personality styles in ChatGPT. Credit: OpenAI

In addition, the company trained GPT-5.1 Instant to use “adaptive reasoning,” meaning that the model decides when to spend more computational time processing a prompt before generating output.

The company plans to roll out the models gradually over the next few days, starting with paid subscribers before expanding to free users. OpenAI plans to bring both GPT-5.1 Instant and GPT-5.1 Thinking to its API later this week. GPT-5.1 Instant will appear as gpt-5.1-chat-latest, and GPT-5.1 Thinking will be released as GPT-5.1 in the API, both with adaptive reasoning enabled. The older GPT-5 models will remain available in ChatGPT under the legacy models dropdown for paid subscribers for three months.

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities Read More »

openai-signs-massive-ai-compute-deal-with-amazon

OpenAI signs massive AI compute deal with Amazon

On Monday, OpenAI announced it has signed a seven-year, $38 billion deal to buy cloud services from Amazon Web Services to power products like ChatGPT and Sora. It’s the company’s first big computing deal after a fundamental restructuring last week that gave OpenAI more operational and financial freedom from Microsoft.

The agreement gives OpenAI access to hundreds of thousands of Nvidia graphics processors to train and run its AI models. “Scaling frontier AI requires massive, reliable compute,” OpenAI CEO Sam Altman said in a statement. “Our partnership with AWS strengthens the broad compute ecosystem that will power this next era and bring advanced AI to everyone.”

OpenAI will reportedly use Amazon Web Services immediately, with all planned capacity set to come online by the end of 2026 and room to expand further in 2027 and beyond. Amazon plans to roll out hundreds of thousands of chips, including Nvidia’s GB200 and GB300 AI accelerators, in data clusters built to power ChatGPT’s responses, generate AI videos, and train OpenAI’s next wave of models.

Wall Street apparently liked the deal, because Amazon shares hit an all-time high on Monday morning. Meanwhile, shares for long-time OpenAI investor and partner Microsoft briefly dipped following the announcement.

Massive AI compute requirements

It’s no secret that running generative AI models for hundreds of millions of people currently requires a lot of computing power. Amid chip shortages over the past few years, finding sources of that computing muscle has been tricky. OpenAI is reportedly working on its own GPU hardware to help alleviate the strain.

But for now, the company needs to find new sources of Nvidia chips, which accelerate AI computations. Altman has previously said that the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources, an amount that is enough to roughly power 25 million US homes, according to Reuters.

OpenAI signs massive AI compute deal with Amazon Read More »

sam-altman-wants-a-refund-for-his-$50,000-tesla-roadster-deposit

Sam Altman wants a refund for his $50,000 Tesla Roadster deposit

2017 feels like another era these days, but if you cast your mind back that far, you might remember Tesla CEO Elon Musk’s vaporware Roadster 2.0. Full of nonsensical-sounding features that impressed people who know a little bit about rockets but nothing about cars, the $200,000 electric car promised to have a suction fan and “cold gas thrusters,” plus 620 miles (1,000 km) of range and a whole load of other stuff that’s never happening.

Plenty of other electric automakers have introduced electric hypercars in the eight years since Musk declared the second Roadster a thing, with no sign of it being any closer to reality, if the latest job postings are accurate. And it seems that over time, a lot of the people who gave the company a hefty deposit—some say interest-free loan—have become tired of waiting and want their money back.

And that’s not quite so easy, it turns out. Musk’s current Silicon Valley rival is the latest to discover this. According to Sam Altman’s social media account, he placed an order for a Roadster on July 11, 2018, with a deposit of $45,000 ($58,206 in today’s money). But after emailing Tesla for a refund, he discovered the email address associated with preorders had been deleted.

A screenshot of Sam Altman's X posts about cancelling his car

Credit: Twitter

Perhaps Altman forgot to ask ChatGPT how best to go about getting his money. If he had, he might have stumbled across the experience of streamer Marques Brownlee, who eventually had to pick up a telephone and call someone to get most of his $50,000 back. Or perhaps some of the threads at Reddit or the Tesla forums, where other people who fell for the cold gas thruster-equipped two-seater with Lucid-busting range and F1-beating acceleration have gathered to share stories of how best to make Tesla return their money.

Sam Altman wants a refund for his $50,000 Tesla Roadster deposit Read More »

after-teen-death-lawsuits,-character.ai-will-restrict-chats-for-under-18-users

After teen death lawsuits, Character.AI will restrict chats for under-18 users

Lawsuits and safety concerns

Character.AI was founded in 2021 by Noam Shazeer and Daniel De Freitas, two former Google engineers, and raised nearly $200 million from investors. Last year, Google agreed to pay about $3 billion to license Character.AI’s technology, and Shazeer and De Freitas returned to Google.

But the company now faces multiple lawsuits alleging that its technology contributed to teen deaths. Last year, the family of 14-year-old Sewell Setzer III sued Character.AI, accusing the company of being responsible for his death. Setzer died by suicide after frequently texting and conversing with one of the platform’s chatbots. The company faces additional lawsuits, including one from a Colorado family whose 13-year-old daughter, Juliana Peralta, died by suicide in 2023 after using the platform.

In December, Character.AI announced changes, including improved detection of violating content and revised terms of service, but those measures did not restrict underage users from accessing the platform. Other AI chatbot services, such as OpenAI’s ChatGPT, have also come under scrutiny for their chatbots’ effects on young users. In September, OpenAI introduced parental control features intended to give parents more visibility into how their kids use the service.

The cases have drawn attention from government officials, which likely pushed Character.AI to announce the changes for under-18 chat access. Steve Padilla, a Democrat in California’s State Senate who introduced the safety bill, told The New York Times that “the stories are mounting of what can go wrong. It’s important to put reasonable guardrails in place so that we protect people who are most vulnerable.”

On Tuesday, Senators Josh Hawley and Richard Blumenthal introduced a bill to bar AI companions from use by minors. In addition, California Governor Gavin Newsom this month signed a law, which takes effect on January 1, requiring AI companies to have safety guardrails on chatbots.

After teen death lawsuits, Character.AI will restrict chats for under-18 users Read More »

ars-live-recap:-is-the-ai-bubble-about-to-pop?-ed-zitron-weighs-in.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in.


Despite connection hiccups, we covered OpenAI’s finances, nuclear power, and Sam Altman.

On Tuesday of last week, Ars Technica hosted a live conversation with Ed Zitron, host of the Better Offline podcast and one of tech’s most vocal AI critics, to discuss whether the generative AI industry is experiencing a bubble and when it might burst. My Internet connection had other plans, though, dropping out multiple times and forcing Ars Technica’s Lee Hutchinson to jump in as an excellent emergency backup host.

During the times my connection cooperated, Zitron and I covered OpenAI’s financial issues, lofty infrastructure promises, and why the AI hype machine keeps rolling despite some arguably shaky economics underneath. Lee’s probing questions about per-user costs revealed a potential flaw in AI subscription models: Companies can’t predict whether a user will cost them $2 or $10,000 per month.

You can watch a recording of the event on YouTube or in the window below.

Our discussion with Ed Zitron. Click here for transcript.

“A 50 billion-dollar industry pretending to be a trillion-dollar one”

I started by asking Zitron the most direct question I could: “Why are you so mad about AI?” His answer got right to the heart of his critique: the disconnect between AI’s actual capabilities and how it’s being sold. “Because everybody’s acting like it’s something it isn’t,” Zitron said. “They’re acting like it’s this panacea that will be the future of software growth, the future of hardware growth, the future of compute.”

In one of his newsletters, Zitron describes the generative AI market as “a 50 billion dollar revenue industry masquerading as a one trillion-dollar one.” He pointed to OpenAI’s financial burn rate (losing an estimated $9.7 billion in the first half of 2025 alone) as evidence that the economics don’t work, coupled with a heavy dose of pessimism about AI in general.

Donald Trump listens as Nvidia CEO Jensen Huang speaks at the White House during an event on “Investing in America” on April 30, 2025, in Washington, DC. Credit: Andrew Harnik / Staff | Getty Images News

“The models just do not have the efficacy,” Zitron said during our conversation. “AI agents is one of the most egregious lies the tech industry has ever told. Autonomous agents don’t exist.”

He contrasted the relatively small revenue generated by AI companies with the massive capital expenditures flowing into the sector. Even major cloud providers and chip makers are showing strain. Oracle reportedly lost $100 million in three months after installing Nvidia’s new Blackwell GPUs, which Zitron noted are “extremely power-hungry and expensive to run.”

Finding utility despite the hype

I pushed back against some of Zitron’s broader dismissals of AI by sharing my own experience. I use AI chatbots frequently for brainstorming useful ideas and helping me see them from different angles. “I find I use AI models as sort of knowledge translators and framework translators,” I explained.

After experiencing brain fog from repeated bouts of COVID over the years, I’ve also found tools like ChatGPT and Claude especially helpful for memory augmentation that pierces through brain fog: describing something in a roundabout, fuzzy way and quickly getting an answer I can then verify. Along these lines, I’ve previously written about how people in a UK study found AI assistants useful accessibility tools.

Zitron acknowledged this could be useful for me personally but declined to draw any larger conclusions from my one data point. “I understand how that might be helpful; that’s cool,” he said. “I’m glad that that helps you in that way; it’s not a trillion-dollar use case.”

He also shared his own attempts at using AI tools, including experimenting with Claude Code despite not being a coder himself.

“If I liked [AI] somehow, it would be actually a more interesting story because I’d be talking about something I liked that was also onerously expensive,” Zitron explained. “But it doesn’t even do that, and it’s actually one of my core frustrations, it’s like this massive over-promise thing. I’m an early adopter guy. I will buy early crap all the time. I bought an Apple Vision Pro, like, what more do you say there? I’m ready to accept issues, but AI is all issues, it’s all filler, no killer; it’s very strange.”

Zitron and I agree that current AI assistants are being marketed beyond their actual capabilities. As I often say, AI models are not people, and they are not good factual references. As such, they cannot replace human decision-making and cannot wholesale replace human intellectual labor (at the moment). Instead, I see AI models as augmentations of human capability: as tools rather than autonomous entities.

Computing costs: History versus reality

Even though Zitron and I found some common ground about AI hype, I expressed a belief that criticism over the cost and power requirements of operating AI models will eventually not become an issue.

I attempted to make that case by noting that computing costs historically trend downward over time, referencing the Air Force’s SAGE computer system from the 1950s: a four-story building that performed 75,000 operations per second while consuming two megawatts of power. Today, pocket-sized phones deliver millions of times more computing power in a way that would be impossible, power consumption-wise, in the 1950s.

The blockhouse for the Semi-Automatic Ground Environment at Stewart Air Force Base, Newburgh, New York. Credit: Denver Post via Getty Images

“I think it will eventually work that way,” I said, suggesting that AI inference costs might follow similar patterns of improvement over years and that AI tools will eventually become commodity components of computer operating systems. Basically, even if AI models stay inefficient, AI models of a certain baseline usefulness and capability will still be cheaper to train and run in the future because the computing systems they run on will be faster, cheaper, and less power-hungry as well.

Zitron pushed back on this optimism, saying that AI costs are currently moving in the wrong direction. “The costs are going up, unilaterally across the board,” he said. Even newer systems like Cerebras and Grok can generate results faster but not cheaper. He also questioned whether integrating AI into operating systems would prove useful even if the technology became profitable, since AI models struggle with deterministic commands and consistent behavior.

The power problem and circular investments

One of Zitron’s most pointed criticisms during the discussion centered on OpenAI’s infrastructure promises. The company has pledged to build data centers requiring 10 gigawatts of power capacity (equivalent to 10 nuclear power plants, I once pointed out) for its Stargate project in Abilene, Texas. According to Zitron’s research, the town currently has only 350 megawatts of generating capacity and a 200-megawatt substation.

“A gigawatt of power is a lot, and it’s not like Red Alert 2,” Zitron said, referencing the real-time strategy game. “You don’t just build a power station and it happens. There are months of actual physics to make sure that it doesn’t kill everyone.”

He believes many announced data centers will never be completed, calling the infrastructure promises “castles on sand” that nobody in the financial press seems willing to question directly.

An orange, cloudy sky backlights a set of electrical wires on large pylons, leading away from the cooling towers of a nuclear power plant.

After another technical blackout on my end, I came back online and asked Zitron to define the scope of the AI bubble. He says it has evolved from one bubble (foundation models) into two or three, now including AI compute companies like CoreWeave and the market’s obsession with Nvidia.

Zitron highlighted what he sees as essentially circular investment schemes propping up the industry. He pointed to OpenAI’s $300 billion deal with Oracle and Nvidia’s relationship with CoreWeave as examples. “CoreWeave, they literally… They funded CoreWeave, became their biggest customer, then CoreWeave took that contract and those GPUs and used them as collateral to raise debt to buy more GPUs,” Zitron explained.

When will the bubble pop?

Zitron predicted the bubble would burst within the next year and a half, though he acknowledged it could happen sooner. He expects a cascade of events rather than a single dramatic collapse: An AI startup will run out of money, triggering panic among other startups and their venture capital backers, creating a fire-sale environment that makes future fundraising impossible.

“It’s not gonna be one Bear Stearns moment,” Zitron explained. “It’s gonna be a succession of events until the markets freak out.”

The crux of the problem, according to Zitron, is Nvidia. The chip maker’s stock represents 7 to 8 percent of the S&P 500’s value, and the broader market has become dependent on Nvidia’s continued hyper growth. When Nvidia posted “only” 55 percent year-over-year growth in January, the market wobbled.

“Nvidia’s growth is why the bubble is inflated,” Zitron said. “If their growth goes down, the bubble will burst.”

He also warned of broader consequences: “I think there’s a depression coming. I think once the markets work out that tech doesn’t grow forever, they’re gonna flush the toilet aggressively on Silicon Valley.” This connects to his larger thesis: that the tech industry has run out of genuine hyper-growth opportunities and is trying to manufacture one with AI.

“Is there anything that would falsify your premise of this bubble and crash happening?” I asked. “What if you’re wrong?”

“I’ve been answering ‘What if you’re wrong?’ for a year-and-a-half to two years, so I’m not bothered by that question, so the thing that would have to prove me right would’ve already needed to happen,” he said. Amid a longer exposition about Sam Altman, Zitron said, “The thing that would’ve had to happen with inference would’ve had to be… it would have to be hundredths of a cent per million tokens, they would have to be printing money, and then, it would have to be way more useful. It would have to have efficacy that it does not have, the hallucination problems… would have to be fixable, and on top of this, someone would have to fix agents.”

A positivity challenge

Near the end of our conversation, I wondered if I could flip the script, so to speak, and see if he could say something positive or optimistic, although I chose the most challenging subject possible for him. “What’s the best thing about Sam Altman,” I asked. “Can you say anything nice about him at all?”

“I understand why you’re asking this,” Zitron started, “but I wanna be clear: Sam Altman is going to be the reason the markets take a crap. Sam Altman has lied to everyone. Sam Altman has been lying forever.” He continued, “Like the Pied Piper, he’s led the markets into an abyss, and yes, people should have known better, but I hope at the end of this, Sam Altman is seen for what he is, which is a con artist and a very successful one.”

Then he added, “You know what? I’ll say something nice about him, he’s really good at making people say, ‘Yes.’”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in. Read More »

chatgpt-erotica-coming-soon-with-age-verification,-ceo-says

ChatGPT erotica coming soon with age verification, CEO says

On Tuesday, OpenAI CEO Sam Altman announced that the company will allow verified adult users to have erotic conversations with ChatGPT starting in December. The change represents a shift in how OpenAI approaches content restrictions, which the company had loosened in February but then dramatically tightened after an August lawsuit from parents of a teen who died by suicide after allegedly receiving encouragement from ChatGPT.

“In December, as we roll out age-gating more fully and as part of our ‘treat adult users like adults’ principle, we will allow even more, like erotica for verified adults,” Altman wrote in his post on X (formerly Twitter). The announcement follows OpenAI’s recent hint that it would allow developers to create “mature” ChatGPT applications once the company implements appropriate age verification and controls.

Altman explained that OpenAI had made ChatGPT “pretty restrictive to make sure we were being careful with mental health issues” but acknowledged this approach made the chatbot “less useful/enjoyable to many users who had no mental health problems.” The CEO said the company now has new tools to better detect when users are experiencing mental distress, allowing OpenAI to relax restrictions in most cases.

Striking the right balance between freedom for adults and safety for users has been a difficult balancing act for OpenAI, which has vacillated between permissive and restrictive chat content controls over the past year.

In February, the company updated its Model Spec to allow erotica in “appropriate contexts.” But a March update made GPT-4o so agreeable that users complained about its “relentlessly positive tone.” By August, Ars reported on cases where ChatGPT’s sycophantic behavior had validated users’ false beliefs to the point of causing mental health crises, and news of the aforementioned suicide lawsuit hit not long after.

Aside from adjusting the behavioral outputs for its previous GPT-40 AI language model, new model changes have also created some turmoil among users. Since the launch of GPT-5 in early August, some users have been complaining that the new model feels less engaging than its predecessor, prompting OpenAI to bring back the older model as an option. Altman said the upcoming release will allow users to choose whether they want ChatGPT to “respond in a very human-like way, or use a ton of emoji, or act like a friend.”

ChatGPT erotica coming soon with age verification, CEO says Read More »

openai,-jony-ive-struggle-with-technical-details-on-secretive-new-ai-gadget

OpenAI, Jony Ive struggle with technical details on secretive new AI gadget

OpenAI overtook Elon Musk’s SpaceX to become the world’s most valuable private company this week, after a deal that valued it at $500 billion. One of the ways the ChatGPT maker is seeking to justify the price tag is a push into hardware.

The goal is to improve the “smart speakers” of the past decade, such as Amazon’s Echo speaker and its Alexa digital assistant, which are generally used for a limited set of functions such as listening to music and setting kitchen timers.

OpenAI and Ive are seeking to build a more powerful and useful machine. But two people familiar with the project said that settling on the device’s “voice” and its mannerisms were a challenge.

One issue is ensuring the device only chimes in when useful, preventing it from talking too much or not knowing when to finish the conversation—an ongoing issue with ChatGPT.



“The concept is that you should have a friend who’s a computer who isn’t your weird AI girlfriend… like [Apple’s digital voice assistant] Siri but better,” said one person who was briefed on the plans. OpenAI was looking for “ways for it to be accessible but not intrusive.”

“Model personality is a hard thing to balance,” said another person close to the project. “It can’t be too sycophantic, not too direct, helpful, but doesn’t keep talking in a feedback loop.”

OpenAI’s device will be entering a difficult market. Friend, an AI companion worn as a pendant around your neck, has been criticized for being “creepy” and having a “snarky” personality. An AI pin made by Humane, a company that Altman personally invested in, has been scrapped.

Still, OpenAI has been on a hiring spree to build its hardware business. Its acquisition of io brought in more than 20 former Apple hardware employees poached by Ive from his alma mater. It has also recruited at least a dozen other Apple device experts this year, according to LinkedIn accounts.

It has similarly poached members of Meta’s staff working on the Big Tech group’s Quest headset and smart glasses.

OpenAI is also working with Chinese contract manufacturers, including Luxshare, to create its first device, according to two people familiar with the development that was first reported by The Information. The people added that the device might be assembled outside of China.

OpenAI and LoveFrom, Ive’s design group, declined to comment.

© 2025 The Financial Times Ltd. All rights reserved. Not to be redistributed, copied, or modified in any way.

OpenAI, Jony Ive struggle with technical details on secretive new AI gadget Read More »