Space exploration

turning-the-moon-into-a-fuel-depot-will-take-a-lot-of-power

Turning the Moon into a fuel depot will take a lot of power


Getting oxygen from regolith takes 24 kWh per kilogram, and we’d need tonnes.

Without adjustments for relativity, clocks here and on the Moon would rapidly diverge. Credit: NASA

If humanity is ever to spread out into the Solar System, we’re going to need to find a way to put fuel into rockets somewhere other than the cozy confines of a launchpad on Earth. One option for that is in low-Earth orbit, which has the advantage of being located very close to said launch pads. But it has the considerable disadvantage of requiring a lot of energy to escape Earth’s gravity—it takes a lot of fuel to put substantially less fuel into orbit.

One alternative is to produce fuel on the Moon. We know there is hydrogen and oxygen present, and the Moon’s gravity is far easier to overcome, meaning more of what we produce there can be used to send things deeper into the Solar System. But there is a tradeoff: any fuel production infrastructure will likely need to be built on Earth and sent to the Moon.

How much infrastructure is that going to involve? A study released today by PNAS evaluates the energy costs of producing oxygen on the Moon, and finds that they’re substantial: about 24 kWh per kilogram. This doesn’t sound bad until you start considering how many kilograms we’re going to eventually need.

Free the oxygen!

The math that makes refueling from the Moon appealing is pretty simple. “As a rule of thumb,” write the authors of the new study on the topic, “rockets launched from Earth destined for [Earth-Moon Lagrange Point 1] must burn ~25 kg of propellant to transport one kg of payload, whereas rockets launched from the Moon to [Earth-Moon Lagrange Point 1] would burn only ~four kg of propellant to transport one kg of payload.” Departing from the Earth-Moon Lagrange Point for locations deeper into the Solar System also requires less energy than leaving low-Earth orbit, meaning the fuel we get there is ultimately more useful, at least from an exploration perspective.

But, of course, you need to make the fuel there in the first place. The obvious choice for that is water, which can be split to produce hydrogen and oxygen. We know there is water on the Moon, but we don’t yet know how much, and whether it’s concentrated into large deposits. Given that uncertainty, people have also looked at other materials that we know are present in abundance on the Moon’s surface.

And there’s probably nothing more abundant on that surface than regolith, the dust left over from constant tiny impacts that have, over time, eroded lunar rocks. The regolith is composed of a variety of minerals, many of which contain oxygen, typically the heavier component of rocket fuel. And a variety of people have figured out the chemistry involved in separating oxygen from these minerals on the scale needed for rocket fuel production.

But knowing the chemistry is different from knowing what sort of infrastructure is needed to get that chemistry done at a meaningful scale. To get a sense of this, the researchers decided to focus on isolating oxygen from a mineral called ilmenite, or FeTiO3. It’s not the easiest way to get oxygen—iron oxides win out there—but it’s well understood. Someone actually patented oxygen production from ilmenite back in the 1970s, and two hardware prototypes have been developed, one of which may be sent to the Moon on a future NASA mission.

The researchers propose a system that would harvest regolith, partly purify the ilmenite, then combine it with hydrogen at high temperatures, which would strip the oxygen out as water, leaving behind purified iron and titanium (both of which may be useful to have). The resulting water would then be split to feed the hydrogen back into the system, while the oxygen can be sent off for use in rockets.

(This wouldn’t solve the issue of what that oxygen will ultimately oxidize to power a rocket. But oxygen is typically the heavier component of rocket fuel combinations—typically about 80 percent of the mass—and so the bigger challenge to get to a fuel depot.)

Obviously, this process will require a lot of infrastructure, like harvesters, separators, high-temperature reaction chambers, and more. But the researchers focus on a single element: how much power will it suck down?

More power!

To get their numbers, the researchers made a few simplifying assumptions. These include assuming that it’s possible to purify ilmenite from raw regolith and that it will be present in particles small enough that about half the material present will participate in chemical reactions. They ignored both the potential to get even more oxygen from the iron and titanium oxides present, as well as the potential for contamination from problematic materials like hydrogen sulfide or hydrochloric acid.

The team found that almost all of the energy is consumed at three steps in the process: the high-temperature hydrogen reaction that produces water (55 percent), splitting the water afterwards (38 percent), and converting the resulting oxygen to its liquid form (five percent). The typical total usage, depending on factors like the concentration of ilmenite in the regolith, worked out to be about 24 kW-hr for each kilogram of liquid oxygen.

Obviously, the numbers are sensitive to how efficiently you can do things like heat the reaction mix. (It might be possible to do this heating with concentrated solar, avoiding the use of electricity for this entirely, but the authors didn’t analyze that.) But it was also sensitive to less obvious efficiencies. For example, a better separation of the ilmenite from the rest of the regolith means you’re using less energy to heat contaminants. So, while the energetic cost of that separation is small, it pays off to do it effectively.

Based on orbital observations, the researchers map out the areas where ilmenite is present at high enough concentrations for this approach to make sense. These include some of the mares on the near side of the Moon, so they’re easy to get to.

A map of the lunar surface with locations highlighted in color.

A map of the lunar surface, with areas with high ilmenite concentrations shown in blue.

Credit: Leger, et. al.

A map of the lunar surface, with areas with high ilmenite concentrations shown in blue. Credit: Leger, et. al.

On its own, 24 kWh doesn’t seem like a lot of power. The problem is that we will need a lot of kilograms. The researchers estimate that getting an empty SpaceX Starship from the lunar surface to the Earth-Moon Lagrange Point takes 80 tonnes of liquid oxygen. And a fully fueled starship can hold over 500 tonnes of liquid oxygen.

We can compare that to something like the solar array on the International Space Station, which has a capacity of about 100 kW. That means it could power the production of about four kilograms of oxygen an hour. At that rate, it’ll take a bit over 10 days to produce a tonne, and a bit more than two years to get enough oxygen to get an empty Starship to the Lagrange Point—assuming 24-7 production. Being on the near side, they will only produce for half the time, given the lunar day.

Obviously, we can build larger arrays than that, but it boosts the amount of material that needs to be sent to the Moon from Earth. It may potentially make more sense to use nuclear power. While that would likely involve more infrastructure than solar arrays, it would allow the facilities to run around the clock, thus getting more production from everything else we’ve shipped from Earth.

This paper isn’t meant to be the final word on the possibilities for lunar-based refueling; it’s simply an early attempt to put hard numbers on what ultimately might be the best way to explore our Solar System. Still, it provides some perspective on just how much effort we’ll need to make before that sort of exploration becomes possible.

PNAS, 2025. DOI: 10.1073/pnas.2306146122 (About DOIs).

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Turning the Moon into a fuel depot will take a lot of power Read More »

“archeology”-on-the-iss-helps-identify-what-astronauts-really-need

“Archeology” on the ISS helps identify what astronauts really need

Archeology without the dig —

Regular photography shows a tool shed and more isolated toilet would be appreciated.

I woman holds a handheld device in front of a rack of equipment.

Enlarge / Jessica Watkins gets to work on the ISS

“Archeology really is a perspective on material culture we use as evidence to understand how humans adapt to their environment, to the situations they are in, and to each other. There is no place, no time that is out of bounds,” says Justin Walsh, an archeologist at Chapman University who led the first off-world archeological study on board the ISS.

Walsh’s and his team wanted to understand, document, and preserve the heritage of the astronaut culture at one of the first permanent space habitats. “There is this notion about astronauts that they are high achievers, highly intelligent, and highly trained, that they are not like you and me. What we learned is that they are just people, and they want the comforts of home,” Walsh says.

Disposable cameras and garbage

“In 2008, my student in an archeology class raised her hand and said, ‘What about stuff in space, is that heritage?’ I said, ‘Oh my God, I’ve never thought of this before, but yes,’” Walsh says. “Think of Tranquility base—it’s an archeological site. You could go back there, and you could reconstruct not only the specific activities of Neil Armstrong and Buzz Aldrin, but you could understand the engineering culture, the political culture, etc. of the society that created that equipment, sent it to the Moon, and left it there.”

So he conceived the idea of an archeological study on the ISS, wrote a proposal, sent it to NASA, and got rejected. NASA said human sciences were not their priority and not part of their mission. But in 2021, NASA changed its mind.

“They said they had an experiment that could not be done at the scheduled time, so they had to delay it. Also, they changed the crew size from six to seven people,” says Walsh. These opened up some idle time in the astronauts’ schedules, allowing NASA to find space in the schedule for less urgent projects on the station. The agency gave Walsh’s team the go-ahead under the condition that their study could be done with the equipment already present on the ISS.

The outline of Walsh’s research was inspired by and loosely based on the Tucson Garbage Project and the Undocumented Migration Project, two contemporary archeology studies. The first drew conclusions about people’s lives by studying the garbage they threw away. The second documented the experiences of migrants on their way to the US from Mexico.

“Jason De León, who is the principal investigator of this project, gave people in Mexico disposable cameras, and he retrieved those cameras from them when they got to the US. He could observe things they experienced without being there himself. For me, that was a lightbulb moment,” says Walsh.

There were cameras on board the ISS and there was a crew to take pictures with them. To pull off an equivalent of digging a test pit in space, Walsh’s team chose six locations on the station, asked the crew to mark them with squares one meter across, and asked the astronauts to take a picture of each of those squares once a day for 60 days, from January to March 2022.

Building a space shed

In the first paper discussing the study’s results, Walsh’s team covered two out of six chosen locations, dubbed squares 03 and 05. The 03 square was in a maintenance area near the four crew berths where the US crew sleeps. It’s near docking ports for spacecraft coming to the ISS. The square was drawn around a blue board with Velcro patches meant to hold tools and equipment in place.

“All historic photographs of this location published by NASA show somebody working in there—fixing a piece of equipment, doing a science experiment,” says Walsh. But when his team analyzed day-by-day photos of the same spot, the items velcroed to the wall hardly changed in those 60 days. “It was the same set of items over and over again. If there was an activity, it was a scientific experiment. It was supposed to be the maintenance area. So where was the maintenance? And even if it was a science area, where’s the science? It was only happening on 10 percent of days,” Walsh says.

“Archeology” on the ISS helps identify what astronauts really need Read More »

human-muscle-cells-come-back-from-space,-look-aged

Human muscle cells come back from space, look aged

Putting some muscle into it —

Astronauts’ muscles atrophy in space, but we can identify the genes involved.

Image of two astronauts in an equipment filled chamber, standing near the suits they wear for extravehicular activities.

Enlarge / Muscle atrophy is a known hazard of spending time on the International Space Station.

Muscle-on-chip systems are three-dimensional human muscle cell bundles cultured on collagen scaffolds. A Stanford University research team sent some of these systems to the International Space Station to study the muscle atrophy commonly observed in astronauts.

It turns out that space triggers processes in human muscles that eerily resemble something we know very well: getting old. “We learned that microgravity mimics some of the qualities of accelerated aging,” said Ngan F. Huang, an associate professor at Stanford who led the study.

Space-borne bioconstructs

“This work originates from our lab’s expertise in regenerative medicine and tissue engineering. We received funding to do a tissue engineering experiment on the ISS, which really helped us embark on this journey, and became curious how microgravity affects human health,” said Huang. So her team got busy designing the research equipment needed to work onboard the space station. The first step was building the muscle-on-chip systems.

“A lot of what was known about how space affects muscles was gathered through studying the astronauts or studying animals like mice put in microgravity for research purposes,” Huang said. “In some cases, there were also in vitro cultured cells on a Petri dish—something very basic. We wanted to have something more structurally complex.” Her team developed a muscle-on-chip platform in which human myotubes, cells that organize into long parallel bundles that eventually become muscle fibers in a living organism, were grown on collagen scaffolds. The goal was to make the samples emulate real muscles better. But that came with a challenge: keeping them alive on the ISS.

“When we grow cells on Earth, we pour the medium—basically a liquid with nutrients that allow the cells to grow—over the cells, and everything is fine,” Huang said. “But in space, in the absence of gravity, we needed a closed, leak-proof, tightly sealed chamber. The medium was sloshed around in there.”

Oxygen and carbon dioxide levels were maintained with permeable membranes. Changing the medium was a complicated procedure involving syringes and small custom-designed ports. But getting all this gadgetry up and running was worth it in the end.

Genes of atrophy

Huang’s team had two sets of muscle-on-chip systems: one on the ground and one on the ISS. The idea of the study was to compare the genes that were upregulated or downregulated in each sample set. It turned out that many genes associated with aging saw their activity increase in microgravity conditions.

This result was confirmed when the team analyzed the medium that was taken off after the cells had grown in it. “The goal was to identify proteins released by the cells that were associated with microgravity. Among those, the most notable was the GDF15, which is relevant to different diseases, particularly mitochondrial dysfunction or senescence,” said Huang.

Overall, the condition of cells on the ISS was somewhat similar to sarcopenia, an age-related muscle loss disease. “There were some similarities, but also a lot of differences. The reason we didn’t make sarcopenia the main focus of this study is that we know our muscle-on-chip system is a model. It’s mostly muscle cells on a scaffold. It doesn’t have blood vessels or nerves. Comparing that to clinical, real muscle samples is a bit tricky, as it is not comparing apples to apples,” said Huang.

Nevertheless, her team went on to use their ISS muscle-on-chip samples to conduct proof-of-concept drug screening tests. Drugs they tested included those used to treat sarcopenia, among other conditions.

Space drugs

“One of the drugs we tested was the [protein] IGF 1, which is a growth factor naturally found in the body in different tissues, especially in muscles. When there is an injury, IGF 1 activates within a body to initiate muscle regeneration. Also, IGF 1 tend to be declined in aging muscles,” said Huang. The second drug tested was 15-PGDH-i, a relatively new inhibitor of enzymes that hinder the process of muscle regeneration. Used on the muscles-on-chip on the ISS, the drugs partially reduced some of the microgravity-related effects.

“One of the limitations of this work was that on the ISS, the microgravity is also accompanied by other factors, such as ionizing radiation, and it is hard to dissociate one from the other,” said Huang. It’s still unclear if the effects observed in the ISS samples were there due to radiation, the lack of gravity, both, or some additional factor. Huang’s team plans to do similar experiments on Earth in simulated microgravity conditions. “With some of the specialized equipment we recently acquired, it is possible to look at just the effects of microgravity,” Huang said. Those experiments are aimed at testing a wider range of drugs.

“The reason we do this drug screening is to develop drugs that could either be taken preemptively or during the flight to counteract muscle atrophy. It would probably be more feasible, lighter, and cheaper than doing artificial gravity concepts,” Huang said. The most promising candidate drugs selected in these ground experiments will be tested on Huang’s muscle-on-chip systems onboard the ISS in 2025.

Stem Cell Reports, 2024. DOI: 10.1016/j.stemcr.2024.06.010

Human muscle cells come back from space, look aged Read More »

astronauts-find-their-tastes-dulled,-and-a-vr-iss-hints-at-why

Astronauts find their tastes dulled, and a VR ISS hints at why

Pass the sriracha —

The visual environment of the ISS seems to influence people’s experience of food.

Image of astronauts aboard the ISS showing off pizzas they've made.

Enlarge / The environment you’re eating in can influence what you taste, and space is no exception.

Astronauts on the ISS tend to favor spicy foods and top other foods with things like tabasco or shrimp cocktail sauce with horseradish. “Based on anecdotal reports, they have expressed that food in space tastes less flavorful. This is the way to compensate for this,” said Grace Loke, a food scientist at the RMIT University in Melbourne, Australia.

Loke’s team did a study to take a closer look at those anecdotal reports and test if our perception of flavor really changes in an ISS-like environment. It likely does, but only some flavors are affected.

Tasting with all senses

“There are many environmental factors that could contribute to how we perceive taste, from the size of the area to the color and intensity of the lighting, the volume and type of sounds present, the way our surroundings smell, down to even the size and shape of our cutlery. Many other studies covered each of these factors in some way or another,” said Loke.

That’s why her team started to unravel the bland ISS food mystery by recreating the ISS environment in VR. “Certain environments are difficult to be duplicated, such as the ISS, which led us to look at digital solutions to mimic how it felt [to be] living and working in these areas,” said Julia Low, a nutrition and food technologist at the RMIT University and co-author of the study.

Once the VR version of the ISS was ready, the team had 54 participants smell flavors of vanilla, almonds, and lemon. The first round of tests was done in a pretty normal room, and the second with the VR goggles on, running the simulated ISS environment complete with sterile, cluttered spaces, sounds present at the real ISS, and objects floating around in microgravity.

The participants said the lemon flavor seemed the same in both rounds. Almonds and vanilla, on the other hand, seemed more intense when participants were in the VR environment. While that’s the opposite of what might be expected from astronauts’ dining habits, it is informative. “The bottom line is we may smell aromas differently in a space-like environment, but it is selective as to what kind of aromas. We’re not entirely sure why this happens, but knowing that a difference exists is the first step to find out more,” Loke said.

Loke and her colleagues then pulled out a mass spectrometer and took a closer look at the composition of the flavors they used in the tests.

Space-ready ingredients

The lemon flavor in Loke’s team tests was lemon essential oil applied to a cotton ball, which was then placed in a closed container that was kept sealed until it was given to the participants to smell. The vapors released from the container contained several volatile chemicals such as limonene, camphene, 3-carene, and monoterpene alcohols like linalool, carveol, and others.

Almond flavors contained similar chemicals, but there was one notable difference: the almond and vanilla flavors contained benzaldehyde, while the lemon did not. “Benzaldehyde naturally gives off a sweet aroma, while the lemon aroma, which did not have it, has a more fruity and citrusy aroma profile. We believe that it may be the sweet characteristics of aromas that leads to a more intense perception in [simulated] space,” said Loke.

Astronauts find their tastes dulled, and a VR ISS hints at why Read More »

building-robots-for-“zero-mass”-space-exploration

Building robots for “Zero Mass” space exploration

A robot performing construction on the surface of the moon against the black backdrop of space.

Sending 1 kilogram to Mars will set you back roughly $2.4 million, judging by the cost of the Perseverance mission. If you want to pack up supplies and gear for every conceivable contingency, you’re going to need a lot of those kilograms.

But what if you skipped almost all that weight and only took a do-it-all Swiss Army knife instead? That’s exactly what scientists at NASA Ames Research Center and Stanford University are testing with robots, algorithms, and highly advanced building materials.

Zero mass exploration

“The concept of zero mass exploration is rooted in self-replicating machines, an engineering concept John von Neumann conceived in the 1940s”, says Kenneth C. Cheung, a NASA Ames researcher. He was involved in the new study published recently in Science Robotics covering self-reprogrammable metamaterials—materials that do not exist in nature and have the ability to change their configuration on their own. “It’s the idea that an engineering system can not only replicate, but sustain itself in the environment,” he adds.

Based on this concept, Robert A. Freitas Jr. in the 1980s proposed a self-replicating interstellar spacecraft called the Von Neumann probe that would visit a nearby star system, find resources to build a copy of itself, and send this copy to another star system. Rinse and repeat.

“The technology of reprogrammable metamaterials [has] advanced to the point where we can start thinking about things like that. It can’t make everything we need yet, but it can make a really big chunk of what we need,” says Christine E. Gregg, a NASA Ames researcher and the lead author of the study.

Building blocks for space

One of the key problems with Von Neumann probes was that taking elements found in the soil on alien worlds and processing them into actual engineering components was resource-intensive and required huge amounts of energy. The NASA Ames team solved that with using prefabricated “voxels”—standardized reconfigurable building blocks.

The system derives its operating principles from the way nature works on a very fundamental level. “Think how biology, one of the most scalable systems we have ever seen, builds stuff,” says Gregg. “It does that with building blocks. There are on the order of 20 amino acids which your body uses to make proteins to make 200 different types of cells and then combines trillions of those cells to make organs as complex as my hair and my eyes. We are using the same strategy,” she adds.

To demo this technology, they built a set of 256 of those blocks—extremely strong 3D structures made with a carbon-fiber-reinforced polymer called StattechNN-40CF. Each block had fastening interfaces on every side that could be used to reversibly attach them to other blocks and form a strong truss structure.

A 3×3 truss structure made with these voxels had an average failure load of 900 Newtons, which means it could hold over 90 kilograms despite being incredibly light itself (its density is just 0.0103 grams per cubic centimeter). “We took these voxels out in backpacks and built a boat, a shelter, a bridge you could walk on. The backpacks weighed around 18 kilograms. Without technology like that, you wouldn’t even think about fitting a boat and a bridge in a backpack,” says Cheung. “But the big thing about this study is that we implemented this reconfigurable system autonomously with robots,” he adds.

Building robots for “Zero Mass” space exploration Read More »