space launch system

rocket-report:-ariane-6-beats-vulcan-to-third-launch;-china’s-first-drone-ship

Rocket Report: Ariane 6 beats Vulcan to third launch; China’s first drone ship


Why is China’s heavy-lift Long March 5B able to launch only 10 Guowang satellites at a time?

Wearing their orange launch and reentry spacesuits, Artemis II commander Reid Wiseman (bottom) and pilot Victor Glover (top) walk out of an emergency egress basket during nighttime training at Launch Complex 39B.

Welcome to Edition 8.06 of the Rocket Report! Two of the world’s most storied rocket builders not named SpaceX achieved major successes this week. Arianespace’s Ariane 6 rocket launched from French Guiana on its third flight Tuesday night with a European weather satellite. Less than 20 minutes later, United Launch Alliance’s third Vulcan rocket lifted off from Florida on a US military mission. These are two of the three big rockets developed in the Western world that have made their orbital debuts in the last two years, alongside Blue Origin’s New Glenn launcher. Ariane 6 narrowly won the “race” to reach its third orbital flight, but if you look at it another way, Ariane 6 reached its third flight milestone 13 months after its inaugural launch. It took Vulcan more than 19 months, and New Glenn has flown just once. SpaceX’s Super Heavy/Starship rocket has flown nine times but has yet to reach orbit.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Sixth success for sea-launched Chinese rocket. Private Chinese satellite operator Geespace added 11 spacecraft to its expanding Internet of Things constellation on August 8, aiming to boost low-power connectivity in key emerging markets, Space News reports. The 11 satellites rode into orbit aboard a solid-fueled Jielong 3 (Smart Dragon 3) rocket lifting off from an ocean platform in the Yellow Sea off the coast of Rizhao, a city in eastern China’s Shandong province. This was the sixth flight of the Jielong 3, a rocket developed by a commercially oriented spinoff of the state-owned China Academy of Launch Vehicle Technology.

Mistaken for a meteor … The fourth stage of the Jielong 3 rocket, left in orbit after deploying its 11 satellite payloads, reentered the atmosphere late Sunday night. The fiery and destructive reentry created a fireball that streaked across the skies over Spain, the Spanish newspaper El Mundo reports. Many Spanish residents identified the streaking object as a meteor associated with the Perseid meteor shower. But it turned out to be a piece of China’s Jielong 3 rocket. Any debris that may have survived the scorching reentry likely fell into the Mediterranean Sea.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Portugal green-lights Azores spaceport. The Portuguese government has granted the Atlantic Spaceport Consortium a license to build and operate a rocket launch facility on the island of Santa Maria in the Azores, European Spaceflight reports. The Atlantic Spaceport Consortium (ASC) was founded in 2019 with the goal of developing a commercial spaceport on Santa Maria, 1,500 kilometers off the Portuguese mainland. In September 2024, the company showcased the island’s suitability as a launch site by launching two small solid-fuel amateur-class rockets that it developed in-house.

What’s on deck? … The spaceport license granted by Portugal’s regulatory authorities does not cover individual launches themselves. Those must be approved in a separate licensing process. It’s likely that the launch site on Santa Maria Island will initially host suborbital launches, including flights by the Polish rocket company SpaceForest. The European Space Agency has also selected Santa Maria as the landing site for the first flight of the Space Rider lifting body vehicle after it launches into orbit, perhaps in 2027. (submitted by claudiodcsilva)

Why is Jeff Bezos buying launches from Elon Musk? Early Monday morning, a Falcon 9 rocket lifted off from its original launch site in Florida. Remarkably, it was SpaceX’s 100th launch of the year. Perhaps even more notable was the rocket’s payload: two-dozen Project Kuiper satellites, which were dispensed into low-Earth orbit on target, Ars reports. This was SpaceX’s second launch of satellites for Amazon, which is developing a constellation to deliver low-latency broadband Internet around the world. SpaceX, then, just launched a direct competitor to its Starlink network into orbit. And it was for the founder of Amazon, Jeff Bezos, who owns a rocket company of his own in Blue Origin.

Several answers … So how did it come to this—Bezos and Elon Musk, competitors in so many ways, working together in space? There are several answers. Most obviously, launching payloads for customers is one of SpaceX’s two core business areas, alongside Starlink. SpaceX sells launch services to all comers and typically offers the lowest price per kilogram to orbit. There’s immediate revenue to be made if a company with deep pockets like Amazon is willing to pay SpaceX. Second, the other options to get Kuiper satellites into orbit just aren’t available at the volume Amazon needs. Amazon has reserved the lion’s share of its Kuiper launches with SpaceX’s competitors: United Launch Alliance, Arianespace, and Jeff Bezos’ own space company Blue Origin. Lastly, SpaceX could gain some leverage by providing launch services to Amazon. In return for a launch, SpaceX has asked other companies with telecom satellites, such as OneWeb and Kepler Communications, to share spectrum rights to enable Starlink to expand into new markets.

Trump orders cull of commercial launch regulations. President Donald Trump signed an executive order on Wednesday directing government agencies to “eliminate or expedite” environmental reviews for commercial launch and reentry licenses, Ars reports. The FAA, part of the Department of Transportation, is responsible for granting the licenses after ensuring launch and reentries don’t endanger the public, comply with environmental laws, and comport with US national interests. The drive toward deregulation will be welcome news for companies like SpaceX, led by onetime Trump ally Elon Musk; SpaceX conducts nearly all of the commercial launches and reentries licensed by the FAA.

Deflecting scrutiny? … The executive order does several things, and not all of them will be as controversial as the potential elimination of environmental reviews. The order includes a clause directing the government to reevaluate, amend, or rescind a slate of launch-safety regulations written during the first Trump administration. The FAA published the new regulations, known as Part 450, in 2020, and they went into effect in 2021, but space companies have complained that they are too cumbersome and have slowed down the license approval process. The Biden administration established a committee last year to look at reforming the regulations in response to industry’s outcry. Another part of the order that will likely lack bipartisan support is a call for making the head of the FAA’s commercial spaceflight division a political appointee. This job has historically been held by a career civil servant.

Ariane 6 launches European weather satellite. Europe’s new Ariane 6 rocket successfully launched for a third time on Tuesday night, carrying a satellite into orbit for weather forecasting and climate monitoring, Euronews reports. “The success of this second commercial launch confirms the performance, reliability, and precision of Ariane 6,” said Martin Sion, CEO of ArianeGroup, operator of the rocket. “Once again, the new European heavy-lift launcher meets Europe’s needs, ensuring sovereign access to space,” Sion added. It marks the second commercial flight of the rocket, which has been in development for almost a decade with the European Space Agency (ESA). It is significant as it gives Europe independent access to space and reduces its reliance on Elon Musk’s SpaceX.

Eumetsat returns to Europe … The polar-orbiting weather satellite launched by the Ariane 6 rocket this week is owned by the European Organization for the Exploitation of Meteorological Satellites, or Eumetsat. Headquartered in Germany, Eumetsat is a multinational organization that owns and operates geostationary and polar-orbiting weather satellites, watching real-time storm development over Europe and Africa, while feeding key data into global weather and climate models. Just last month, Eumetsat’s newest geostationary weather satellite launched from Florida on a SpaceX Falcon 9 rocket because of delays with the Ariane 6 program.

Rocket Lab isn’t giving up on 2025 yet. Rocket Lab continues to push for a first launch of its medium-lift Neutron rocket before the end of the year, but company executives acknowledge that schedule has no margin for error, Space News reports. It may seem unlikely, but Rocket Lab’s founder and CEO, Peter Beck, said in a conference call with investment analysts last week that the company has a “green light” schedule to debut the Neutron rocket within the next four-and-a-half months. There’s still much work to do to prepare for the first launch, and the inaugural flight seems almost certain to slip into 2026.

Launch pad nearly complete … Rocket Lab plans to host a ribbon-cutting at the Neutron rocket’s new launch pad on Wallops Island, Virginia, on August 28. This launch pad is located just south of the spaceport’s largest existing launch facility, where Northrop Grumman’s Antares rocket lifts off on resupply missions to the International Space Station. Rocket Lab has a small launch pad for its light-class Electron launcher co-located with the Antares pad at Wallops.

Chinese company reveals drone ship. The Chinese launch company iSpace has released the first photos of an ocean-going recovery ship to support the landings of reusable first-stage boosters. The company hosted a dedication ceremony in Yangzhou, China, earlier this month for the vessel, which looks similar to SpaceX’s rocket landing drone ships. In a press release, iSpace said the ship, named “Interstellar Return,” is China’s first marine rocket recovery ship, and the fifth such vessel in the world. SpaceX has three drone ships in its fleet for the Falcon 9 rocket, and Blue Origin has one for the New Glenn booster.

Rocket agnostic … The recovery ship will be compatible with various medium- and large-sized reusable rockets, iSpace said. But its main use will be as the landing site for the first stage booster for iSpace’s own Hyperbola 3 rocket, a medium-lift launcher with methane-fueled engines. The company has completed multiple vertical takeoff and landing tests of prototype boosters for the Hyperbola 3. The recovery ship measures about 100 meters long and 42 meters wide, with a displacement of 17,000 metric tons, and it has the ability to perform “intelligent unmanned operations” thanks to a dynamic positioning system, according to iSpace.

Vulcan’s first national security launch. United Launch Alliance delivered multiple US military satellites into a high-altitude orbit after a prime-time launch Tuesday night, marking an important transition from development to operations for the company’s new Vulcan rocket, Ars reports. This mission, officially designated USSF-106 by the US Space Force, was the first flight of ULA’s Vulcan rocket to carry national security payloads. Two test flights of the Vulcan rocket last year gave military officials enough confidence to certify it for launching the Pentagon’s medium-to-large space missions.

Secrecy in the fairing  … The Vulcan rocket’s Centaur upper stage released its payloads into geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator roughly seven hours after liftoff. One of the satellites deployed by the Vulcan rocket is an experimental navigation testbed named NTS-3. It will demonstrate new technologies that could be used on future GPS navigation satellites. But the Space Force declined to disclose any information about the mission’s other payloads.

Artemis II crew trains for nighttime ops. The four astronauts training to fly around the Moon on NASA’s Artemis II mission next year have been at Kennedy Space Center in Florida this week. One of the reasons they were at Kennedy was to run through a rehearsal for what it will be like to work at the launch pad if the Artemis II mission ends up lifting off at night. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen put on their spacesuits and rehearsed emergency procedures at Launch Complex 39B, replicating a daytime simulation they participated in last year.

Moving forward … The astronauts also went inside the Vehicle Assembly Building to practice using egress baskets they would use to quickly escape the launch pad in the event of a prelaunch emergency. The baskets are fastened to the mobile launch tower inside the VAB, where technicians are assembling and testing the Space Launch System rocket for the Artemis II mission. Later this year, the astronauts will return to Kennedy for a two-part countdown demonstration test. First, the crew members will board their Orion spacecraft once it’s stacked atop the SLS rocket inside the VAB. Then, in part two, the astronauts will again rehearse emergency evacuation procedures once the rocket rolls to the launch pad.

China’s Long March 5B flies again. China is ramping up construction of its national satellite-Internet megaconstellation with the successful deployment of another batch of Guowang satellites by a heavy-lift Long March 5B rocket on Wednesday, Space.com reports. Guowang, whose name translates as “national network,” will be operated by China SatNet, a state-run company established in 2021. The constellation will eventually consist of about 13,000 satellites if all goes to plan.

Make this make sense … Guowang is a long way from that goal. Wednesday’s launch was the eighth overall for the network, but it was the fourth for the project in less than three weeks. Each mission lofts just five to 10 Guowang spacecraft, apparently because each satellite is quite large. For comparison, SpaceX launches 24 to 28 satellites on each mission to assemble its Starlink broadband megaconstellation, which currently consists of nearly 8,100 operational spacecraft. The Long March 5B is China’s most powerful operational rocket, with a lift capacity somewhat higher than SpaceX’s Falcon 9 but below that of the Falcon Heavy. It begs the question of just how big the Guowang satellites really are, and do they have a purpose beyond broadband Internet service?

Next three launches

Aug. 16: Kinetica 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 07: 35 UTC

Aug. 17: Long March 4C | Unknown Payload | Xichang Satellite Launch Center, China | 09: 05 UTC

Aug. 17: Long March 6A | Unknown Payload | Taiyuan Satellite Launch Center, China | 14: 15 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Ariane 6 beats Vulcan to third launch; China’s first drone ship Read More »

rocket-report:-channeling-the-future-at-wallops;-spacex-recovers-rocket-wreckage

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage


China’s Space Pioneer seems to be back on track a year after an accidental launch.

A SpaceX Falcon 9 rocket carrying a payload of 24 Starlink Internet satellites soars into space after launching from Vandenberg Space Force Base, California, shortly after sunset on July 18, 2025. This image was taken in Santee, California, approximately 250 miles (400 kilometers) away from the launch site. Credit: Kevin Carter/Getty Images

Welcome to Edition 8.04 of the Rocket Report! The Pentagon’s Golden Dome missile defense shield will be a lot of things. Along with new sensors, command and control systems, and satellites, Golden Dome will require a lot of rockets. The pieces of the Golden Dome architecture operating in orbit will ride to space on commercial launch vehicles. And Golden Dome’s space-based interceptors will essentially be designed as flying fuel tanks with rocket engines. This shouldn’t be overlooked, and that’s why we include a couple of entries discussing Golden Dome in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Space-based interceptors are a real challenge. The newly installed head of the Pentagon’s Golden Dome missile defense shield knows the clock is ticking to show President Donald Trump some results before the end of his term in the White House, Ars reports. Gen. Michael Guetlein identified command-and-control and the development of space-based interceptors as two of the most pressing technical challenges for Golden Dome. He believes the command-and-control problem can be “overcome in pretty short order.” The space-based interceptor piece of the architecture is a different story.

Proven physics, unproven economics … “I think the real technical challenge will be building the space-based interceptor,” Guetlein said. “That technology exists. I believe we have proven every element of the physics that we can make it work. What we have not proven is, first, can I do it economically, and then second, can I do it at scale? Can I build enough satellites to get after the threat? Can I expand the industrial base fast enough to build those satellites? Do I have enough raw materials, etc.?” Military officials haven’t said how many space-based interceptors will be required for Golden Dome, but outside estimates put the number in the thousands.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

One big defense prime is posturing for Golden Dome. Northrop Grumman is conducting ground-based testing related to space-based interceptors as part of a competition for that segment of the Trump administration’s Golden Dome missile-defense initiative, The War Zone reports. Kathy Warden, Northrop Grumman’s CEO, highlighted the company’s work on space-based interceptors, as well as broader business opportunities stemming from Golden Dome, during a quarterly earnings call this week. Warden identified Northrop’s work in radars, drones, and command-and-control systems as potentially applicable to Golden Dome.

But here’s the real news … “It will also include new innovation, like space-based interceptors, which we’re testing now,” Warden continued. “These are ground-based tests today, and we are in competition, obviously, so not a lot of detail that I can provide here.” Warden declined to respond directly to a question about how the space-based interceptors Northrop Grumman is developing now will actually defeat their targets. (submitted by Biokleen)

Trump may slash environmental rules for rocket launches. The Trump administration is considering slashing rules meant to protect the environment and the public during commercial rocket launches, changes that companies like Elon Musk’s SpaceX have long sought, ProPublica reports. A draft executive order being circulated among federal agencies, and viewed by ProPublica, directs Secretary of Transportation Sean Duffy to “use all available authorities to eliminate or expedite” environmental reviews for launch licenses. It could also, in time, require states to allow more launches or even more launch sites along their coastlines.

Getting political at the FAA … The order is a step toward the rollback of federal oversight that Musk, who has fought bitterly with the Federal Aviation Administration over his space operations, and others have pushed for. Commercial rocket launches have grown exponentially more frequent in recent years. In addition to slashing environmental rules, the draft executive order would make the head of the FAA’s Office of Commercial Space Transportation a political appointee. This is currently a civil servant position, but the last head of the office took a voluntary separation offer earlier this year.

There’s a SPAC for that. An unproven small launch startup is partnering with a severely depleted SPAC trust to do the impossible: go public in a deal they say will be valued at $400 million, TechCrunch reports. Innovative Rocket Technologies Inc., or iRocket, is set to merge with a Special Purpose Acquisition Company, or SPAC, founded by former Commerce Secretary Wilbur Ross. But the most recent regulatory filings by this SPAC showed it was in a tenuous financial position last year, with just $1.6 million held in trust. Likewise, iRocket isn’t flooded with cash. The company has raised only a few million in venture funding, a fraction of what would be needed to develop and test the company’s small orbital-class rocket, named Shockwave.

SpaceX traces a path to orbit for NASA. Two NASA satellites soared into orbit from California aboard a SpaceX Falcon 9 rocket Wednesday, commencing a $170 million mission to study a phenomenon of space physics that has eluded researchers since the dawn of the Space Age, Ars reports. The twin spacecraft are part of the NASA-funded TRACERS mission, which will spend at least a year measuring plasma conditions in narrow regions of Earth’s magnetic field known as polar cusps. As the name suggests, these regions are located over the poles. They play an important but poorly understood role in creating colorful auroras as plasma streaming out from the Sun interacts with the magnetic field surrounding Earth. The same process drives geomagnetic storms capable of disrupting GPS navigation, radio communications, electrical grids, and satellite operations.

Plenty of room for more … The TRACERS satellites are relatively small, each about the size of a washing machine, so they filled only a fraction of the capacity of SpaceX’s Falcon 9 rocket. Three other small NASA tech demo payloads hitched a ride to orbit with TRACERS, kicking off missions to test an experimental communications terminal, demonstrate an innovative scalable satellite platform made of individual building blocks, and study the link between Earth’s atmosphere and the Van Allen radiation belts. In addition to those missions, the European Space Agency launched its own CubeSat to test 5G communications from orbit. Five smallsats from an Australian company rounded out the group. Still, the Falcon 9 rocket’s payload shroud was filled with less than a quarter of the payload mass it could have delivered to the TRACERS mission’s targeted Sun-synchronous orbit.

Tianlong launch pad ready for action. Chinese startup Space Pioneer has completed a launch pad at Jiuquan spaceport in northwestern China for its Tianlong 3 liquid propellent rocket ahead of a first orbital launch, Space News reports. Space Pioneer said the launch pad passed an acceptance test, and ground crews raised a full-scale model of the Tianlong 3 rocket on the launch pad. “The rehearsal test was successfully completed,” said Space Pioneer, one of China’s leading private launch companies. The activation of the launch pad followed a couple of weeks after Space Pioneer announced the completion of static loads testing on Tianlong 3.

More to come … While this is an important step forward for Space Pioneer, construction of the launch pad is just one element the company needs to finish before Tianlong 3 can lift off for the first time. In June 2024, the company ignited Tianlong 3’s nine-engine first stage on a test stand in China. But the rocket broke free of its moorings on the test stand and unexpectedly climbed into the sky before crashing in a fireball nearby. Space Pioneer says the “weak design of the rocket’s tail structure was the direct cause of the failure” last year. The company hasn’t identified next steps for Tianlong 3, or when it might be ready to fly. Tianlong 3 is a kerosene-fueled rocket with nine main engines, similar in design architecture and payload capacity to SpaceX’s Falcon 9. Also, like Falcon 9, Tianlong 3 is supposed to have a recoverable and reusable first stage booster.

Dredging up an issue at Wallops. Rocket Lab has asked regulators for permission to transport oversized Neutron rocket structures through shallow waters to a spaceport off the coast of Virginia as it races to meet a September delivery deadline, TechCrunch reports. The request, which was made in July, is a temporary stopgap while the company awaits federal clearance to dredge a permanent channel to the Wallops Island site. Rocket Lab plans to launch its Neutron medium-lift rocket from the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Virginia, a lower-traffic spaceport that’s surrounded by shallow channels and waterways. Rocket Lab has a sizable checklist to tick off before Neutron can make its orbital debut, like mating the rocket stages, performing a “wet dress” rehearsal, and getting its launch license from the Federal Aviation Administration. Before any of that can happen, the rocket hardware needs to make it onto the island from Rocket Lab’s factory on the nearby mainland.

Kedging bets … Access to the channel leading to Wallops Island is currently available only at low tides. So, Rocket Lab submitted an application earlier this year to dredge the channel. The dredging project was approved by the Virginia Marine Resources Commission in May, but the company has yet to start digging because it’s still awaiting federal sign-off from the Army Corps of Engineers. As the company waits for federal approval, Rocket Lab is seeking permission to use a temporary method called “kedging” to ensure the first five hardware deliveries can arrive on schedule starting in September. We don’t cover maritime issues in the Rocket Report, but if you’re interested in learning a little about kedging, here’s a link.

Any better ideas for an Exploration Upper Stage? Not surprisingly, Congress is pushing back against the Trump administration’s proposal to cancel the Space Launch System, the behemoth rocket NASA has developed to propel astronauts back to the Moon. But legislation making its way through the House of Representatives includes an interesting provision that would direct NASA to evaluate alternatives for the Boeing-built Exploration Upper Stage, an upgrade for the SLS rocket set to debut on its fourth flight, Ars reports. Essentially, the House Appropriations Committee is telling NASA to look for cheaper, faster options for a new SLS upper stage.

CYA EUS? The four-engine Exploration Upper Stage, or EUS, is an expensive undertaking. Last year, NASA’s inspector general reported that the new upper stage’s development costs had ballooned from $962 million to $2.8 billion, and the project had been delayed more than six years. That’s almost a year-for-year delay since NASA and Boeing started development of the EUS. So, what are the options if NASA went with a new upper stage for the SLS rocket? One possibility is a modified version of United Launch Alliance’s dual-engine Centaur V upper stage that flies on the Vulcan rocket. It’s no longer possible to keep flying the SLS rocket’s existing single-engine upper stage because ULA has shut down the production line for it.

Raising Super Heavy from the deep. For the second time, SpaceX has retrieved an engine section from one of its Super Heavy boosters from the Gulf of Mexico, NASASpaceflight.com reports. Images posted on social media showed the tail end of a Super Heavy booster being raised from the sea off the coast of northern Mexico. Most of the rocket’s 33 Raptor engines appear to still be attached to the lower section of the stainless steel booster. Online sleuths who closely track SpaceX’s activities at Starbase, Texas, have concluded the rocket recovered from the Gulf is Booster 13, which flew on the sixth test flight of the Starship mega-rocket last November. The booster ditched in the ocean after aborting an attempted catch back at the launch pad in South Texas.

But why? … SpaceX recovered the engine section of a different Super Heavy booster from the Gulf last year. The company’s motivation for salvaging the wreckage is unclear. “Speculated reasons include engineering research, environmental mitigation, or even historical preservation,” NASASpaceflight reports.

Next three launches

July 26: Vega C | CO3D & MicroCarb | Guiana Space Center, French Guiana | 02: 03 UTC

July 26: Falcon 9 | Starlink 10-26 | Cape Canaveral Space Force Station, Florida | 08: 34 UTC

July 27: Falcon 9 | Starlink 17-2 | Vandenberg Space Force Base, California | 03: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Channeling the future at Wallops; SpaceX recovers rocket wreckage Read More »

lawmakers-writing-nasa’s-budget-want-a-cheaper-upper-stage-for-the-sls-rocket

Lawmakers writing NASA’s budget want a cheaper upper stage for the SLS rocket


Eliminating the Block 1B upgrade now would save NASA at least $500 million per year.

Artist’s illustration of the Boeing-developed Exploration Upper Stage, with four hydrogen-fueled RL10 engines. Credit: NASA

Not surprisingly, Congress is pushing back against the Trump administration’s proposal to cancel the Space Launch System, the behemoth rocket NASA has developed to propel astronauts back to the Moon.

Spending bills making their way through both houses of Congress reject the White House’s plan to wind down the SLS rocket after two more launches, but the text of a draft budget recently released by the House Appropriations Committee suggests an openness to making some major changes to the program.

The next SLS flight, called Artemis II, is scheduled to lift off early next year to send a crew of four astronauts around the far side of the Moon. Artemis III will follow a few years later on a mission to attempt a crew lunar landing at the Moon’s south pole. These missions follow Artemis I, a successful unpiloted test flight in 2022.

After Artemis III, the official policy of the Trump administration is to terminate the SLS program, along with the Orion crew capsule designed to launch on top of the rocket. The White House also proposed canceling NASA’s Gateway, a mini-space station to be placed in orbit around the Moon. NASA would instead procure commercial launches and commercial spacecraft to ferry astronauts between the Earth and the Moon, while focusing the agency’s long-term gaze toward Mars.

CYA EUS?

House and Senate appropriations bills would preserve SLS, Orion, and the Gateway. However, the House version of NASA’s budget has an interesting paragraph directing NASA to explore cheaper, faster options for a new SLS upper stage.

NASA has tasked Boeing, which also builds SLS core stages, to develop an Exploration Upper Stage for debut on the Artemis IV mission, the fourth flight of the Space Launch System. This new upper stage would have large propellant tanks and carry four engines instead of the single engine used on the rocket’s interim upper stage, which NASA is using for the first three SLS flights.

The House version of NASA’s fiscal year 2026 budget raises questions about the long-term future of the Exploration Upper Stage. In one section of the bill, House lawmakers would direct NASA to “evaluate alternatives to the current Exploration Upper Stage (EUS) design for SLS.” The committee members wrote the evaluation should focus on reducing development and production costs, shortening the schedule, and maintaining the SLS rocket’s lift capability.

“NASA should also evaluate how alternative designs could support the long-term evolution of SLS and broader exploration goals beyond low-Earth orbit,” the lawmakers wrote. “NASA is directed to assess various propulsion systems, stage configurations, infrastructure compatibility, commercial and international collaboration opportunities, and the cost and schedule impacts of each alternative.”

The SLS rocket is expensive, projected to cost at least $2.5 billion per launch, not counting development costs or expenses related to the Orion spacecraft and the ground systems required to launch it at Kennedy Space Center in Florida. Those figures bring the total cost of an Artemis mission using SLS and Orion to more than $4 billion, according to NASA’s inspector general.

NASA’s Block 1B version of the SLS rocket will be substantially larger than Block 1. Credit: NASA

The EUS is likewise an expensive undertaking. Last year, NASA’s inspector general reported that the new upper stage’s development costs had ballooned from $962 million to $2.8 billion, and the Boeing-led project had been delayed more than six years. The version of the SLS rocket with the EUS, known as Block 1B, is supposed to deliver a 40 percent increase in performance over the Block 1 configuration used on the first three Space Launch System flights. Overall, NASA’s inspector general projected Block 1B’s development costs to total $5.7 billion.

Eliminating the Block 1B upgrade now would save NASA at least $500 million per year, and perhaps more if NASA could also end work on a costly mobile launch tower specifically designed to support SLS Block 1B missions.

NASA can’t go back to the interim upper stage, which is based on the design of the upper stage that flew on United Launch Alliance’s (ULA’s) now-retired Delta IV Heavy rocket. ULA has shut down its Delta production line, so there’s no way to build any more. What ULA does have is a new high-energy upper stage called Centaur V. This upper stage is sized for ULA’s new Vulcan rocket, with more capability than the interim upper stage but with lower performance than the larger EUS.

A season of compromise, maybe

Ars’ Eric Berger wrote last year about the possibility of flying the Centaur V upper stage on SLS missions.

Incorporating the Centaur V wouldn’t maintain the SLS rocket’s lift capability, as the House committee calls for in its appropriations bill. The primary reason for improving the rocket’s performance is to give SLS Block 1B enough oomph to carry “co-manifested” payloads, meaning it can launch an Orion crew capsule and equipment for NASA’s Gateway lunar space station on a single flight. The lunar Gateway is also teed up for cancellation in Trump’s budget proposal, but both congressional appropriations bills would save it, too. If the Gateway escapes cancellation, there are ways to launch its modules on commercial rockets.

Blue Origin also has an upper stage that could conceivably fly on the Space Launch System. But the second stage for Blue Origin’s New Glenn rocket would be a more challenging match for SLS for several reasons, chiefly its 7-meter (23-foot) diameter—too wide to be a drop-in replacement for the interim upper stage used on Block 1. ULA’s Centaur V is much closer in size to the existing upper stage.

The House budget bill has passed a key subcommittee vote but won’t receive a vote from the full appropriations committee until after Congress’s August recess. A markup of the bill by the House Appropriations Committee scheduled for Thursday was postponed after Speaker Mike Johnson announced an early start to the recess this week.

Ars reported last week on the broad strokes of how the House and Senate appropriations bills would affect NASA. Since then, members of the House Appropriations Committee released the text of the report attached to their version of the NASA budget. The report, which includes the paragraph on the Exploration Upper Stage, provides policy guidance and more detailed direction on where NASA should spend its money.

The House’s draft budget includes $2.5 billion for the Space Launch System, close to this year’s funding level and $500 million more than the Trump administration’s request for the next fiscal year, which begins October 1. The budget would continue development of SLS Block 1B and the Exploration Upper Stage while NASA completes a six-month study of alternatives.

The report attached to the Senate appropriations bill for NASA has no specific instructions regarding the Exploration Upper Stage. But like the House bill, the Senate’s draft budget directs NASA to continue ordering spares and long-lead parts for SLS and Orion missions beyond Artemis III. Both versions of the NASA budget require the agency to continue with SLS and Orion until a suitable commercial, human-rated rocket and crew vehicle are proven ready for service.

In a further indication of Congress’ position on the SLS and Orion programs, lawmakers set aside more than $4 billion for the procurement of SLS rockets for the Artemis IV and Artemis V rockets in the reconciliation bill signed into law by President Donald Trump earlier this month.

Congress must pass a series of federal appropriations bills by October 1, when funding for the current fiscal year runs out. If Congress doesn’t act by then, it could pass a continuing resolution to maintain funding at levels close to this year’s budget or face a government shutdown.

Lawmakers will reconvene in Washington, DC, in early September in hopes of finishing work on the fiscal year 2026 budget. The section of the budget that includes NASA still must go through a markup hearing by the House Appropriations Committee and pass floor votes in the House and Senate. Then the two chambers will have to come to a compromise on the differences in their appropriations bill. Only then can the budget be put to another vote in each chamber and go to the White House for Trump’s signature.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Lawmakers writing NASA’s budget want a cheaper upper stage for the SLS rocket Read More »

nasa-tested-a-new-sls-booster-that-may-never-fly,-and-the-end-of-it-blew-off

NASA tested a new SLS booster that may never fly, and the end of it blew off


NASA didn’t want to say much about one of the tests, and the other one lost its nozzle.

An uncontained plume of exhaust appeared near the nozzle of an SLS solid rocket booster moments before its nozzle was destroyed during a test-firing Thursday. Credit: NASA

NASA’s Space Launch System appears to have a finite shelf life. The Trump administration wants to cancel it after just three launches, while the preliminary text of a bill making its way through Congress would extend it to five flights.

But chances are low the Space Launch System will make it to nine flights, and if it does, it’s questionable that it would reach that point before 2040. The SLS rocket is a core piece of NASA’s plan to return US astronauts to the Moon under the Artemis program, but the White House seeks to cancel the program in favor of cheaper commercial alternatives.

For the second time in less than a week, NASA test-fired new propulsion hardware Thursday that the agency would need to keep SLS alive. Last Friday, a new liquid-fueled RS-25 engine ignited on a test stand at NASA’s Stennis Space Center in Mississippi. The hydrogen-fueled engine is the first of its kind to be manufactured since the end of the Space Shuttle program. This particular RS-25 engine is assigned to power the fifth flight of the SLS rocket, a mission known as Artemis V.

Then, on Thursday of this week, NASA and Northrop Grumman test-fired a new solid rocket booster in Utah. This booster features a new design that NASA would use to power SLS rockets beginning with the ninth mission, or Artemis IX. The motor tested on Thursday isn’t flight-worthy. It’s a test unit that engineers will use to gather data on the rocket’s performance.

While the engine test in Mississippi apparently went according to plan, the ground firing of the new solid rocket booster didn’t go quite as smoothly. Less than two minutes into the burn, the motor’s exhaust nozzle violently shattered into countless shards of debris. You can watch the moment in the YouTube video below.

At the start of the program nearly 15 years ago, NASA and its backers in Congress pitched the SLS rocket as the powerhouse behind a new era of deep space exploration. The Space Launch System, they said, would have the advantage of recycling old space shuttle engines and boosters, fast-tracking the new rocket’s path to the launch pad for less money than the cost of an all-new vehicle.

That didn’t pan out. Each Artemis mission costs $4.2 billion per flight, and that’s with shuttle-era engines and boosters that NASA and its contractors already have in their inventories. NASA’s 16 leftover shuttle main engines are enough for the first four SLS flights. NASA has leftover parts for eight pairs of solid rocket boosters.

It has been 10 years

Recognizing that shuttle-era parts will eventually run out, NASA signed a contract with Aerojet Rocketdyne to set the stage for the production of new RS-25 engines in 2015. NASA later ordered an initial batch of six RS-25 engines from Aerojet, then added 18 more to the order in 2020, at a price of about $100 million per engine. NASA and its contractor aim to reduce the cost to $70 million per engine, but even that figure is many times the cost of engines of comparable size and power: Blue Origin’s BE-4 and SpaceX’s Raptor.

Finally, NASA test-fired a new flight-rated RS-25 engine for the first time last week at Stennis Space Center. The agency has often provided a livestream of its engine tests at Stennis, but it didn’t offer the public any live video. And this particular test was a pretty big deal. L3Harris, which acquired Aerojet Rocketdyne in 2023, has finally reactivated the RS-25 production line after a decade and billions of dollars of funding.

In fact, NASA made no public statement about the RS-25 test until Monday, and the agency didn’t mention its assignment to fly on the Artemis V mission. If the Trump administration gets its way, the engine will never fly. Maybe that’s fine, but after so long with so much taxpayer investment, this is a milestone worth publicizing, if not celebrating.

L3Harris issued a press release Tuesday confirming the engine’s planned use on the fifth SLS mission. The engine completed a 500-second acceptance test, throttling up to 111 percent of rated thrust, demonstrating more power than engines that flew on the space shuttle or on the first SLS launch in 2022.

A new RS-25 engine, No. 20001, was installed on its test stand in Mississippi earlier this year. Credit: NASA

“This successful acceptance test shows that we’ve been able to replicate the RS-25’s performance and reliability, while incorporating modern manufacturing techniques and upgraded components such as the main combustion chamber, nozzle, and pogo accumulator assembly,” said Kristin Houston, president of space propulsion and power systems at Aerojet Rocketdyne, L3Harris. “Our propulsion technology is key to ensuring the United States leads in lunar exploration, creates a sustained presence on the Moon and does not cede this strategic frontier to other nations.”

The test-firing last Friday came a few days before the 50th anniversary of the first space shuttle main engine test at Stennis on June 24, 1975. That engine carried the serial number 0001. The new RS-25 engine is designated No. 20001.

Watch out

NASA followed last week’s low-key engine test with the test-firing of a solid-fueled booster at Northrop Grumman’s rocket test site in Promontory, Utah, on Thursday. Held in place on its side, the booster produced 3.9 million pounds of thrust, outclassing the power output of the existing boosters assigned to the first eight SLS missions.

Unlike the RS-25 firing at Stennis, NASA chose to broadcast the booster test. Everything appeared to go well until 1 minute and 40 seconds into the burn, when a fiery plume of super-hot exhaust appeared to burn through part of the booster’s structure just above the nozzle. Moments later, the nozzle disintegrated.

Solid rocket boosters can’t be turned off after ignition, and for better or worse, the motor continued firing until it ran out of propellant about 30 seconds later. The rocket sparked a fire in the hills overlooking the test stand.

This was the first test-firing of the Booster Obsolescence and Life Extension (BOLE) program, which aims to develop a higher-performance solid rocket booster for SLS missions. NASA awarded Northrop Grumman a $3.2 billion contract in 2021 to produce boosters with existing shuttle parts for five SLS missions (Artemis IV-VIII), and design, develop, and test a new booster design for Artemis IX.

The boosters produce more than 75 percent of the thrust required to propel the SLS rocket off the launch pad with NASA’s crewed Orion spacecraft on top. Four RS-25 engines power the core stage, collectively generating more than 2 million pounds of thrust.

Northrop Grumman calls the new booster “the largest and most powerful segmented solid rocket motor ever built for human spaceflight.”

One of the most significant changes with the BOLE booster design is that it replaces shuttle-era steel cases with carbon-fiber composite cases. Northrop says the new cases are lighter and stronger. It also replaces the booster’s hydraulic thrust vector control steering system with an electronic system. The propellant packed inside the booster is also different, using a mix that Northrop packs inside its commercial rocket motors instead of the recipe used for the space shuttle.

Northrop Grumman has had a tough time with rocket nozzles in recent years. In 2019, a test motor for the company’s now-canceled Omega rocket lost its nozzle during a test-firing in Utah. Then, last year, a smaller Northrop-made booster flying on United Launch Alliance’s Vulcan rocket lost its nozzle in flight. Vulcan’s guidance system and main engines corrected for the problem, and the rocket still achieved its planned orbit.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NASA tested a new SLS booster that may never fly, and the end of it blew off Read More »

rocket-report:-rocket-lab-to-demo-cargo-delivery;-america’s-new-icbm-in-trouble

Rocket Report: Rocket Lab to demo cargo delivery; America’s new ICBM in trouble


SpaceX’s plan to turn Starbase into Texas’ newest city won the approval of voters—err, employees.

A decommissioned Titan II intercontinental ballistic missile inside a silo at a museum in Green Valley, Arizona.

Welcome to Edition 7.43 of the Rocket Report! There’s been a lot of recent news in hypersonic testing. We cover some of that in this week’s newsletter, which is just a taste of the US military’s appetite for fielding its own hypersonic weapons, and conversely, the Pentagon’s emphasis on the detection and destruction of an enemy’s hypersonic missiles. China has already declared its first hypersonic weapons operational, and Russia claims to have them, too. Now, the Pentagon is finally close to placing hypersonic missiles with combat units. Many US rocket companies believe the hypersonics sector is a lucrative business. Some companies have enough confidence in this emerging market—or lack of faith in the traditional space launch market—to pivot entirely toward hypersonics. I’m interested in seeing if their bets pay off.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Stratolaunch tests reusable hypersonic rocket plane. Stratolaunch has finally found a use for the world’s largest airplane. Twice in the last five months, the company launched a hypersonic vehicle over the Pacific Ocean, accelerated it to more than five times the speed of sound, and autonomously landed at Vandenberg Space Force Base in California, Ars reports. Stratolaunch used the same Talon-A vehicle for both flights, demonstrating its reusability, a characteristic that sets it apart from competitors. Zachary Krevor, Stratolaunch’s president and CEO, said his team aims to ramp up to monthly flights by the end of the year.

A 21st century X-15 … This is the first time anyone in the United States has flown a reusable hypersonic rocket plane since the last flight of the X-15, the iconic rocket-powered aircraft that pushed the envelope of high-altitude, high-speed flight 60 years ago. Like the Talon-A, the X-15 released from a carrier jet and ignited a rocket engine to soar into the uppermost layers of the atmosphere. But the X-15 had a pilot in command, while the Talon-A flies on autopilot. Stratolaunch is one of several companies participating in a US military program to test parts and technologies for use on future hypersonic weapons. “Why the autonomous flight matters is because hypersonic systems are now pushing the envelope in terms of maneuvering capability, maneuvering beyond what can be done by the human body,” Krevor said.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

New details about another recent hypersonic test. A hypersonic missile test on April 25 validated the launch mechanism for the US Navy Conventional Prompt Strike (CPS) weapon program, the Defense Department said on May 2. The CPS missile, the Navy’s name for what the US Army calls the Long Range Hypersonic Weapon (LRHW), launched from Cape Canaveral Space Force Station, Florida, Aviation Week & Space Technology reports. While the Army and Navy versions use the same hypersonic glide vehicle and missile, they use different launch mechanisms. Last year, the Army tested its version of the hypersonic missile launcher. Now, the Navy has validated the cold-gas launch mechanism it will install on guided missile destroyers.

Deploying soon … “The cold-gas approach allows the Navy to eject the missile from the platform and achieve a safe distance above the ship prior to first stage ignition,” said Vice Adm Johnny R. Wolfe Jr., director of the Navy’s Strategic Systems Programs, which is the lead designer of the common hypersonic missile. The Army plans to field its Long Range Hypersonic Weaponalso called “Dark Eagle”with a combat unit later this year, while the Navy’s version won’t be ready for testing at sea until 2027 or 2028. Both missiles are designed for conventional (non-nuclear) strikes. The Army’s Dark Eagle will be the US military’s first operational hypersonic weapon.

Sentinel needs new silos. The Air Force will have to dig entirely new nuclear missile silos for the LGM-35A Sentinel, creating another complication for a troubled program that is already facing future cost and schedule overruns, Defense News reports. The Air Force originally hoped the existing silos that have housed Minuteman III intercontinental ballistic missiles could be adapted to launch Sentinel missiles, which would be more efficient than digging entirely new silos. But a test project at Vandenberg Space Force Base in California showed that approach would be fraught with further problems and cause the program to run even further behind and over budget, the service said.

Rising costs … Sentinel, developed by Northrop Grumman, will replace the Air Force’s fleet of Minuteman III ICBMs, which entered service in 1970, as the land-based leg of the military’s nuclear triad. Sentinel was originally expected to cost $77.7 billion, but projected future costs ran so severely over budget that in January 2024, the program triggered a review process known as a critical Nunn-McCurdy breach. After that review, the Pentagon last year concluded Sentinel was too critical to national security to abandon, but ordered the Air Force to restructure it to bring its costs under control. Additional studies of the program are highlighting more potential problems.

Gilmour says it (hopefully) will wait no more. The Australian launch startup Gilmour Space Technologies has been given approval by Australia’s Civil Aviation Safety Authority for the debut launch of its Eris orbital rocket, InnovationAus.com reports. There is still one final regulatory hurdle, a final sign-off from the Australian Space Agency. If that happens in the next few days, Gilmour’s launch window will open May 15. The company has announced tentative launch schedules before, only to be thwarted by technical issues, regulatory hangups, or bad weather. Most recently, Gilmour got within six days of its targeted launch date in March before regulatory queries and the impact of a tropical cyclone forced a delay.

Stand by for history … The launch of Gilmour’s three-stage Eris rocket will be historic. If successful, the 82-foot-tall (25-meter) rocket will be Australia’s first homegrown orbital launcher. Eris is capable of hauling cargos up to 672 pounds (305 kilograms) to orbit, according to Gilmour. The company has dispatched a small team from its Gold Coast headquarters to the launch site in Queensland, on Australia’s northeastern coast, to perform testing on the vehicle after it remained dormant for weeks. (Submitted by trainticket)

Fresh insights into one of SpaceX’s worst days. When a Falcon 9 rocket exploded on its launch pad nearly nine years ago, SpaceX officials initially struggled to explain how it could have happened. The lack of a concrete explanation for the failure led SpaceX engineers to pursue hundreds of theories. One was the possibility that an outside “sniper” had shot the rocket. This theory appealed to SpaceX founder Elon Musk. A building leased by SpaceX’s main competitor in launch, United Launch Alliance, lay just a mile away from the Falcon 9 launch pad, and a video around the time of the explosion indicated a flash on its roof. Ars has now obtained a letter sent to SpaceX by the Federal Aviation Administration more than a month after the explosion, indicating the matter was elevated to the FBI. The bureau looked into it, and what did they find? Nothing, apparently.

Investigation terminated … “The FBI has informed us that based upon a thorough and coordinated review by the appropriate Federal criminal and security investigative authorities, there were no indications to suggest that sabotage or any other criminal activity played a role in the September 1 Falcon 9 explosion,” an FAA official wrote in the letter to SpaceX. Ultimately, engineers determined the explosion was caused by the sudden failure of a high-pressure helium tank on the Falcon 9’s upper stage.

Eric Schmidt’s motivations become clearer. In the nearly two months since former Google chief executive Eric Schmidt acquired Relativity Space, the billionaire has not said much publicly about his plans for the launch company. However, his intentions for Relativity are becoming increasingly clear: He wants to have the capability to launch a significant amount of computing infrastructure into space, Ars reports. During a congressional hearing last month, Schmidt discussed the need more electricity to power data centers that will facilitate the computing needs for AI development and applications.

How big this crisis is … “People are planning 10 gigawatt data centers,” Schmidt said at the hearing. “Gives you a sense of how big this crisis is.” In an exchange with my colleague Eric Berger on X, Schmidt seemed to confirm he bought Relativity Space as a means to support the development of data centers in space. Such data centers, ideally, would be powered by solar panels and be able to radiate heat into the vacuum of space. Relativity’s Terran R rocket, still in development, is well-sized to play a role in launching the infrastructure for data centers in space. But several big questions remain: How big would these data centers be? Where would they go within an increasingly cluttered low-Earth orbit? Could space-based solar power meet their energy needs? Can all of this heat be radiated away efficiently in space? Economically, would any of this make sense?

Rocket Lab, meet Rocket Cargo. Rocket Lab’s next-generation Neutron rocket has been selected for an experimental US Air Force mission to test rapid, global, cargo-delivery capabilities, a milestone for the company as it pushes further into the national security launch market, Space News reports. The mission, slated for no earlier than 2026, will fall under the Air Force Research Laboratory’s (AFRL) “Rocket Cargo” program, which explores how commercial launch vehicles might one day deliver materiel to any point on Earth within hours—a vision akin to airlift logistics via spaceflight.

A new mission for Neutron … Peter Beck, Rocket Lab’s founder and CEO, said the Rocket Cargo contract from AFRL represents an “experimental phase” of the program. “It’ll be interesting to see if that turns into a full requirement for an operational capability,” he said Thursday. Neutron is expected to carry a payload that will reenter Earth’s atmosphere, demonstrating the rocket’s ability to safely transport and deploy cargo. SpaceX’s Starship, with roughly 10 times more payload lift capacity than Neutron, is also on contract with AFRL for demonstrations for the Rocket Cargo program. Meanwhile, Beck said Neutron remains on schedule for its inaugural launch from Wallops Island, Virginia, later this year.

Trump calls for canceling the Space Launch System. The Trump administration released its “skinny” budget proposal earlier this week. Overall, NASA is asked to take a 25 percent cut in its budget, from about $25 billion to $18.8 billion. There are also significant changes proposed in NASA’s biggest-ticket exploration programs. The budget would cancel the Lunar Gateway that NASA has started developing and end the Space Launch System rocket and Orion spacecraft after two more flights, Artemis II and Artemis III, Ars reports. A statement from the White House calls the SLS rocket “grossly expensive” with projected costs of $4 billion per launch.

If not SLS, then what? … “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the Trump administration wrote. There are no further details about those commercial systems. NASA has contracted with SpaceX and Blue Origin to develop reusable landers for the Moon, and both of these systems include vehicles to move from Earth orbit to the Moon. In the budget proposal, the White House sets a priority for a human expedition to Mars to follow the Artemis program’s lunar landing.

FAA unlocks SpaceX launch cadence. Although we are still waiting for SpaceX to signal when it will fly the Starship rocket again, the company got some good news from the Federal Aviation Administration on Tuesday, Ars reports. After a lengthy review, the federal agency agreed to allow SpaceX to substantially increase the number of annual launches from its Starbase launch site in South Texas. Previously, the company was limited to five launches, but now it will be able to conduct up to 25 Starship launches and landings during a calendar year.

Waiting for clearance … Although the new finding permits SpaceX to significantly increase its flight rate from South Texas, the company still has work to do before it can fly Starship again. The company’s engineers are still working to get the massive rocket back to flight after its eighth mission broke apart off the coast of Florida on March 6. This was the second time, in two consecutive missions, that the Starship upper stage failed during its initial phase of flight. After two consecutive failures, there will be a lot riding on the next test flight of Starship. It will also be the first time the company attempts to fly a first stage of the rocket for a second time. According to some sources, if additional testing of this upper stage goes well, Starship could launch as early as May 19. This date is also supported by a notice to mariners, but it should be taken as notional rather than something to be confident in.

SpaceX adds to its dominion. Elon Musk’s wish to create his own city has come true, the Texas Tribune reports. On Saturday, voters living around SpaceX’s Starship rocket testing and launch facility in South Texas approved a measure to incorporate the area as a new city. Unofficial results later Saturday night showed the election was a landslide: 212 voted in favor; 6 opposed. After the county certifies the results, the new city will be official.

Elections have consequences … Only 283 people, those who live within the boundaries of the proposed city, were eligible to vote in the election. A Texas Newsroom analysis of the voter rolls showed two-thirds of them either work for SpaceX or had already indicated their support. The three unopposed people who ran to lead the city also have ties to SpaceX. It’s not clear if Musk, whose primary residence is at Starbase, cast a ballot. The vote clears the way for Musk to try to capture more control over the nearby public beach, which must be closed for launches.

Next three launches

May 10: Falcon 9 | Starlink 15-3 | Vandenberg Space Force Base, California | 00: 00 UTC

May 10: Falcon 9 | Starlink 6-91 | Cape Canaveral Space Force Station, Florida | 06: 28 UTC

May 11: Falcon 9 | Starlink 6-83 | Kennedy Space Center, Florida | 04: 24 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Rocket Lab to demo cargo delivery; America’s new ICBM in trouble Read More »

rocket-report:-“no-man’s-land”-in-rocket-wars;-isaacman-lukewarm-on-sls

Rocket Report: “No man’s land” in rocket wars; Isaacman lukewarm on SLS


China’s approach to space junk is worrisome as it begins launching its own megaconstellations.

A United Launch Alliance Atlas V rocket rolls to its launch pad in Florida in preparation for liftoff with 27 satellites for Amazon’s Kuiper broadband network. Credit: United Launch Alliance

Welcome to Edition 7.39 of the Rocket Report! Not getting your launch fix? Buckle up. We’re on the cusp of a boom in rocket launches as three new megaconstellations have either just begun or will soon begin deploying thousands of satellites to enable broadband connectivity from space. If the megaconstellations come to fruition, this will require more than a thousand launches in the next few years, on top of SpaceX’s blistering Starlink launch cadence. We discuss the topic of megaconstellations in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

So, what is SpinLaunch doing now? Ars Technica has mentioned SpinLaunch, the company that literally wants to yeet satellites into space, in previous Rocket Report newsletters. This company enjoyed some success in raising money for its so-crazy-it-just-might-work idea of catapulting rockets and satellites into the sky, a concept SpinLaunch calls “kinetic launch.” But SpinLaunch is now making a hard pivot to small satellites, a move that, on its face, seems puzzling after going all-in on kinetic launch and even performing several impressive hardware tests, throwing a projectile to altitudes of up to 30,000 feet. Ars got the scoop, with the company’s CEO detailing why and how it plans to build a low-Earth orbit telecommunications constellation with 280 satellites.

Traditional versus kinetic … The planned constellation, named Meridian, is an opportunity for SpinLaunch to diversify away from being solely a launch company, according to David Wrenn, the company’s CEO. We’ve observed this in a number of companies that started out as rocket developers before branching out to satellite manufacturing or space services. Wrenn said SpinLaunch could loft all of the Meridian satellites on a single large conventional rocket, or perhaps two medium-lift rockets, and then maintain the constellation with its own kinetic launch system. A satellite communications network presents a better opportunity for profit, Wrenn said. “The launch market is relatively small compared to the economic potential of satellite communication,” he said. “Launch has generally been more of a cost center than a profit center. Satcom will be a much larger piece of the overall industry.”

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Peter Beck suggests Electron is here to stay. The conventional wisdom is that the small launch vehicle business isn’t a big moneymaker. There is really only one company, Rocket Lab, that has gained traction in selling dedicated rides to orbit for small satellites. Rocket Lab’s launcher, Electron, can place payloads of up to a few hundred pounds into orbit. As soon as Rocket Lab had some success, SpaceX began launching rideshare missions on its much larger Falcon 9 rocket, cobbling together dozens of satellites on a single vehicle to spread the cost of the mission among many customers. This offers customers a lower price point than buying a dedicated launch on Electron. But Peter Beck, Rocket Lab’s founder and CEO, says his company has found a successful market providing dedicated launches for small satellites, despite price pressure from SpaceX, Space News reports. “Dedicated small launch is a real market, and it should not be confused with rideshare,” he argued. “It’s totally different.”

No man’s land … Some small satellite companies that can afford the extra cost of a dedicated launch realize the value of controlling their schedule and orbit, traits that a dedicated launch offers over a rideshare, Beck said. It’s easy to blame SpaceX for undercutting the prices of Rocket Lab and other players in this segment of the launch business, but Beck said companies that have failed or withdrawn from the small launch market didn’t have a good business plan, a good product, or good engineering. He added that the capacity of the Electron vehicle is well-suited for dedicated launch, whereas slightly larger rockets in the one-ton-to-orbit class—a category that includes Firefly Aerospace’s Alpha and Isar Aerospace’s Spectrum rockets—are an ill fit. The one-ton performance range is “no man’s land” in the market, Beck said. “It’s too small to be a useful rideshare mission, and it’s too big to be a useful dedicated rocket” for smallsats. (submitted by EllPeaTea)

ULA scrubs first full-on Kuiper launch. A band of offshore thunderstorms near Florida’s Space Coast on Wednesday night forced United Launch Alliance to scrub a launch attempt of the first of dozens of missions on behalf of its largest commercial customer, Amazon, Spaceflight Now reports. The mission will use an Atlas V rocket to deploy 27 satellites for Amazon’s Project Kuiper network. It’s the first launch of what will eventually be more than 3,200 operational Kuiper satellites beaming broadband connectivity from space, a market currently dominated by SpaceX’s Starlink. As of Thursday, ULA hadn’t confirmed a new launch date, but airspace warning notices released by the FAA suggest the next attempt might occur Monday, April 14.

What’s a few more days? … This mission has been a long time coming. Amazon announced the Kuiper megaconstellation in 2019, and the company says it’s investing at least $10 billion in the project (the real number may be double that). Problems in manufacturing the Kuiper satellites, which Amazon is building in-house, delayed the program’s first full-on launch by a couple of years. Amazon launched a pair of prototype satellites in 2023, but the operational versions are different, and this mission fills the capacity of ULA’s Atlas V rocket. Amazon has booked more than 80 launches with ULA, Arianespace, Blue Origin, and SpaceX to populate the Kuiper network. (submitted by EllPeaTea)

Space Force swaps ULA for SpaceX. For the second time in six months, SpaceX will deploy a US military satellite that was sitting in storage, waiting for a slot on United Launch Alliance’s launch schedule, Ars reports. Space Systems Command, which oversees the military’s launch program, announced Monday that it is reassigning the launch of a Global Positioning System satellite from ULA’s Vulcan rocket to SpaceX’s Falcon 9. This satellite, designated GPS III SV-08 (Space Vehicle-08), will join the Space Force’s fleet of navigation satellites beaming positioning and timing signals for military and civilian users around the world. The move allows the GPS satellite to launch as soon as the end of May, the Space Force said. The military executed a similar rocket swap for a GPS mission that launched on a Falcon 9 in December.

Making ULA whole … The Space Force formally certified ULA’s Vulcan rocket for national security missions last month, so Vulcan may finally be on the cusp of delivering for the military. But there are several military payloads in the queue to launch on Vulcan before GPS III SV-08, which was already completed and in storage at its Lockheed Martin factory in Colorado. Meanwhile, SpaceX is regularly launching Falcon 9 rockets with ample capacity to add the GPS mission to the manifest. In exchange for losing the contract to launch this particular GPS satellite, the Space Force swapped a future GPS mission that was assigned to SpaceX to fly on ULA’s Vulcan instead.

Russia launches a former Navy SEAL to space. Jonny Kim, a former Navy SEAL, Harvard Medical School graduate, and now a NASA astronaut, blasted off with two cosmonaut crewmates aboard a Russian Soyuz rocket early Tuesday, CBS News reports. Three hours later, Kim and his Russian crewmates—Sergey Ryzhikov and Alexey Zubritsky—chased down the International Space Station and moved in for a picture-perfect docking aboard their Soyuz MS-27 spacecraft. “It was the trip of a lifetime and an honor to be here,” Kim told flight controllers during a traditional post-docking video conference.

Rotating back to Earth … Ryzhikov, Zubritsky, and Kim joined a crew of seven living aboard the International Space Station, temporarily raising the lab’s crew complement to 10 people. The new station residents are replacing an outgoing Soyuz crew—Alexey Ovchinin, Ivan Wagner, and Don Pettit—who launched to the ISS last September and who plan to return to Earth aboard their own spacecraft April 19 to wrap up a 219-day stay in space. This flight continues the practice of launching US astronauts on Russian Soyuz missions, part of a barter agreement between NASA and the Russian space agency that also reserves a seat on SpaceX Dragon missions for Russian cosmonauts.

China is littering in LEO. China’s construction of a pair of communications megaconstellations could cloud low Earth orbit with large spent rocket stages for decades or beyond, Space News reports. Launches for the government’s Guowang and Shanghai-backed but more commercially oriented Qianfan (Thousand Sails) constellation began in the second half of 2024, with each planned to consist of over 10,000 satellites, demanding more than a thousand launches in the coming years. Placing this number of satellites is enough to cause concern about space debris because China hasn’t disclosed its plans for removing the spacecraft from orbit at the end of their missions. It turns out there’s another big worry: upper stages.

An orbital time bomb … While Western launch providers typically deorbit their upper stages after dropping off megaconstellation satellites in space, China does not. This means China is leaving rockets in orbits high enough to persist in space for more than a century, according to Jim Shell, a space domain awareness and orbital debris expert at Novarum Tech. Space News reported on Shell’s commentary in a social media post, where he wrote that orbital debris mass in low-Earth orbit “will be dominated by PRC [People’s Republic of China] upper stages in short order unless something changes (sigh).” So far, China has launched five dedicated missions to deliver 90 Qianfan satellites into orbit. Four of these missions used China’s Long March 6A rocket, with an upper stage that has a history of breaking up in orbit, exacerbating the space debris problem. (submitted by EllPeaTea)

SpaceX wins another lunar lander launch deal. Intuitive Machines has selected a SpaceX Falcon 9 rocket to launch a lunar delivery mission scheduled for 2027, the Houston Chronicle reports. The upcoming IM-4 mission will carry six NASA payloads, including a European Space Agency-led drill suite designed to search for water at the lunar south pole. It will also include the launch of two lunar data relay satellites that support NASA’s so-called Near Space Network Services program. This will be the fourth lunar lander mission for Houston-based Intuitive Machines under the auspices of NASA’s Commercial Lunar Payload Services program.

Falcon 9 has the inside track … SpaceX almost certainly offered Intuitive Machines the best deal for this launch. The flight-proven Falcon 9 rocket is reliable and inexpensive compared to competitors and has already launched two Intuitive Machines missions, with a third one set to fly late this year. However, there’s another factor that made SpaceX a shoe-in for this contract. SpaceX has outfitted one of its launch pads in Florida with a unique cryogenic loading system to pump liquid methane and liquid oxygen propellants into the Intuitive Machines lunar lander as it sits on top of its rocket just before liftoff. The lander from Intuitive Machines uses these super-cold propellants to feed its main engine, and SpaceX’s infrastructure for loading it makes the Falcon 9 rocket the clear choice for launching it.

Time may finally be running out for SLS. Jared Isaacman, President Trump’s nominee for NASA administrator, said Wednesday in a Senate confirmation hearing that he wants the space agency to pursue human missions to the Moon and Mars at the same time, an effort that will undoubtedly require major changes to how NASA spends its money. My colleague Eric Berger was in Washington for the hearing and reported on it for Ars. Senators repeatedly sought Isaacman’s opinion on the Space Launch System, the NASA heavy-lifter designed to send astronauts to the Moon. The next SLS mission, Artemis II, is slated to launch a crew of four astronauts around the far side of the Moon next year. NASA’s official plans call for the Artemis III mission to launch on an SLS rocket later this decade and attempt a landing at the Moon’s south pole.

Limited runway … Isaacman sounded as if he were on board with flying the Artemis II mission as envisioned—no surprise, then, that the four Artemis II astronauts were in the audience—and said he wanted to get a crew of Artemis III to the lunar surface as quickly as possible. But he questioned why it has taken NASA so long, and at such great expense, to get its deep space human exploration plans moving. In one notable exchange, Isaacman said NASA’s current architecture for the Artemis lunar plans, based on the SLS rocket and Orion spacecraft, is probably not the ideal “long-term” solution to NASA’s deep space transportation plans. The smart reading of this is that Isaacman may be willing to fly the Artemis II and Artemis III missions as conceived, given that much of the hardware is already built. But everything that comes after this, including SLS rocket upgrades and the Lunar Gateway, could be on the chopping block.

Welcome to the club, Blue Origin. Finally, the Space Force has signaled it’s ready to trust Jeff Bezos’ space company, Blue Origin, for launching the military’s most precious satellites, Ars reports. Blue Origin received a contract April 4 to launch seven national security missions for the Space Force between 2027 and 2032, an opening that could pave the way for more launch deals in the future. These missions will launch on Blue Origin’s heavy-lift New Glenn rocket, which had a successful debut test flight in January. The Space Force hasn’t certified New Glenn for national security launches, but military officials expect to do so sometime next year. Blue Origin joins SpaceX and United Launch Alliance in the Space Force’s mix of most-trusted launch providers.

A different class … The contract Blue Origin received last week covers launch services for the Space Force’s most critical space missions, requiring rocket certification and a heavy dose of military oversight to ensure reliability. Blue Origin was already eligible to launch a separate batch of missions the Space Force set aside to fly on newer rockets. The military is more tolerant of risk on these lower-priority missions, which include launches of “cookie cutter” satellites for the Pentagon’s large fleet of missile-tracking satellites and a range of experimental payloads.

Why is SpaceX winning so many Space Force contracts? In less than a week, the US Space Force awarded SpaceX a $5.9 billion deal to make Elon Musk’s space company the Pentagon’s leading launch provider, replacing United Launch Alliance in top position. Then, the Space Force assigned the vast majority of this year’s most lucrative launch contracts to SpaceX. As we mention earlier in the Rocket Report, the military also swapped a ULA rocket for a SpaceX launch vehicle for an upcoming GPS mission. So, is SpaceX’s main competitor worried Elon Musk is tipping the playing field for lucrative government contracts by cozying up to President Trump?

It’s all good, man … Tory Bruno, ULA’s chief executive, doesn’t seem too worried in his public statements, Ars reports. In a roundtable with reporters this week at the annual Space Symposium conference in Colorado, Bruno was asked about Musk’s ties with Trump. “We have not been impacted by our competitor’s position advising the president, certainly not yet,” Bruno said. “I expect that the government will follow all the rules and be fair and follow all the laws, and so we’re behaving that way.” The reason Bruno can say Musk’s involvement in the Trump administration so far hasn’t affected ULA is simple. SpaceX is cheaper and has a ready-made line of Falcon 9 and Falcon Heavy rockets available to launch the Pentagon’s satellites. ULA’s Vulcan rocket is now certified to launch military payloads, but it reached this important milestone years behind schedule.

Two Texas lawmakers are still fighting the last war. NASA has a lot to figure out in the next couple of years. Moon or Mars? Should, or when should, the Space Launch System be canceled? Can the agency absorb a potential 50 percent cut to its science budget? If Senators John Cornyn and Ted Cruz get their way, NASA can add moving a space shuttle to its list. The Lone Star State’s two Republican senators introduced the “Bring the Space Shuttle Home Act” on Thursday, CollectSpace reports. If passed by Congress and signed into law, the bill would direct NASA to take the space shuttle Discovery from the national collection at the Smithsonian National Air and Space Museum and transport it to Space Center Houston, a museum and visitor attraction next to Johnson Space Center, home to mission control and NASA’s astronaut training base. Discovery has been on display at the Smithsonian since 2012. NASA awarded museums in California, Florida, and New York the other three surviving shuttle orbiters.

Dollars and nonsense … Moving a space shuttle from Virginia to Texas would be a logistical nightmare, cost an untold amount of money, and would create a distraction for NASA when its focus should be on future space exploration. In a statement, Cruz said Houston deserves one of NASA’s space shuttles because of the city’s “unique relationship” to the program. Cornyn alleged in a statement that the Obama administration blocked Houston from receiving a space shuttle for political reasons. NASA’s inspector general found no evidence of this. On the contrary, transferring a space shuttle to Texas now would be an unequivocal example of political influence. The Boeing 747s that NASA used to move space shuttles across the country are no longer flightworthy, and NASA scrapped the handling equipment needed to prepare a shuttle for transport. Moving the shuttle by land or sea would come with its own challenges. “I can easily see this costing a billion dollars,” Dennis Jenkins, a former shuttle engineer who directed NASA’s shuttle transition and retirement program more than a decade ago, told CollectSpace in an interview. On a personal note, the presentation of Discovery at the Smithsonian is remarkable to see in person, with aerospace icons like the Concorde and the SR-71 spy plane under the same roof. Space Center Houston can’t match that.

Next three launches

April 12: Falcon 9 | Starlink 12-17 | Kennedy Space Center, Florida | 01: 15 UTC

April 12: Falcon 9 | NROL-192 | Vandenberg Space Force Base, California | 12: 17 UTC

April 14: Falcon 9 | Starlink 6-73 | Cape Canaveral Space Force Station, Florida | 01: 59 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: “No man’s land” in rocket wars; Isaacman lukewarm on SLS Read More »

rocket-report:-stoke-is-stoked;-sovereignty-is-the-buzzword-in-europe

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe


“The idea that we will be able to do it through America… I think is very, very doubtful.”

Stoke Space’s Andromeda upper stage engine is hot-fired on a test stand. Credit: Stoke Space

Welcome to Edition 7.37 of the Rocket Report! It’s been interesting to watch how quickly European officials have embraced ensuring they have a space launch capability independent of other countries. A few years ago, European government satellites regularly launched on Russian Soyuz rockets, and more recently on SpaceX Falcon 9 rockets from the United States. Russia is now non grata in European government circles, and the Trump administration is widening the trans-Atlantic rift. European leaders have cited the Trump administration and its close association with Elon Musk, CEO of SpaceX, as prime reasons to support sovereign access to space, a capability currently offered only by Arianespace. If European nations can reform how they treat their commercial space companies, there’s enough ambition, know-how, and money in Europe to foster a competitive launch industry.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Isar Aerospace aims for weekend launch. A German startup named Isar Aerospace will try to launch its first rocket Saturday, aiming to become the first in a wave of new European launch companies to reach orbit, Ars reports. The Spectrum rocket consists of two stages, stands about 92 feet (28 meters) tall, and can haul payloads up to 1 metric ton (2,200 pounds) into low-Earth orbit. Based in Munich, Isar was founded by three university graduate students in 2018. Isar scrubbed a launch attempt Monday due to unfavorable winds at the launch site in Norway.

From the Arctic … Notably, this will be the first orbital launch attempt from a launch pad in Western Europe. The French-run Guiana Space Center in South America is the primary spaceport for European rockets. Virgin Orbit staged an airborne launch attempt from an airport in the United Kingdom in 2023, and the Plesetsk Cosmodrome is located in European Russia. The launch site for Isar is named Andøya Spaceport, located about 650 miles (1,050 kilometers) north of Oslo, inside the Arctic Circle. (submitted by EllPeaTea)

A chance for competition in Europe. The European Space Agency is inviting proposals to inject competition into the European launch market, an important step toward fostering a dynamic multiplayer industry officials hope one day will mimic that of the United States, Ars reports. The near-term plan for the European Launcher Challenge is for ESA to select companies for service contracts to transport ESA and other European government payloads to orbit from 2026 through 2030. A second component of the challenge is for companies to perform at least one demonstration of an upgraded launch vehicle by 2028. The competition is open to any European company working in the launch business.

Challenging the status quo … This is a major change from how ESA has historically procured launch services. Arianespace has been the only European launch provider available to ESA and other European institutions for more than 40 years. But there are private companies across Europe at various stages of developing their own small launchers, and potentially larger rockets, in the years ahead. With the European Launcher Challenge, ESA will provide each of the winners up to 169 million euros ($182 million), a significant cash infusion that officials hope will shepherd Europe’s nascent private launch industry toward liftoff. Companies like Isar Aerospace, Rocket Factory Augsburg, MaiaSpace, and PLD Space are among the contenders for ESA contracts.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab launches eight satellites. Rocket Lab launched eight satellites Wednesday for a German company that is expanding its constellation to detect and track wildfires, Space News reports. An Electron rocket lifted off from New Zealand and completed deploying its payload of eight CubeSats for OroraTech about 55 minutes later, placing them into Sun-synchronous orbits at an altitude of about 341 miles (550 kilometers). This was Rocket Lab’s fifth launch of the year, and the third in less than two weeks.

Fire goggles … OroraTech launched three satellites before this mission, fusing data from those satellites and government missions to detect and track wildfires. The new satellites are designed to fill a gap in coverage in the afternoon, a peak time for wildfire formation and spread. OroraTech plans to launch eight more satellites later this year. Wildfire monitoring from space is becoming a new application for satellite technology. Last month, OroraTech partnered with Spire for a contract to build a CubeSat constellation called WildFireSat for the Canadian Space Agency. Google is backing FireSat, another constellation of more than 50 satellites to be deployed in the coming years to detect and track wildfires. (submitted by EllPeaTea)

Should Britain have a sovereign launch capability? A UK House of Lords special inquiry committee has heard from industry experts on the importance of fostering a sovereign launch capability, European Spaceflight reports. On Monday, witnesses from the UK space industry testified that the nation shouldn’t rely on others, particularly the United States, to put satellites into orbit. “The idea that we will be able to do it through America… certainly in today’s, you know, the last 50 days, I think is very, very doubtful. The UK needs access to space,” said Scott Hammond, deputy CEO of SaxaVord Spaceport in Scotland.

Looking inward … A representative from one of the most promising UK launch startups agreed. “Most people who are looking to launch are beholden to the United States solutions or services that are there,” said Alan Thompson, head of government affairs at Skyrora. “Without having our own home-based or UK-based service provider, we risk not having that voice and not being able to undertake all these experiments or be able to manifest ourselves better in space.” The UK is the only nation to abandon an independent launch capability after putting a satellite into orbit. The British government canceled the Black Arrow rocket in the early 1970s, citing financial reasons. A handful of companies, including Skyrora, is working to restore the orbital launch business to the UK.

This rocket engine CEO faces some salacious allegations. The Independent published what it described as an exclusive report Monday describing a lawsuit filed against the CEO of RocketStar, a New York-based company that says its mission is “improving upon the engines that power us to the stars.” Christopher Craddock is accused of plundering investor funds to underwrite pricey jaunts to Europe, jewelry for his wife, child support payments, and, according to the company’s largest investor, “airline tickets for international call girls to join him for clandestine weekends in Miami,” The Independent reports. Craddock established RocketStar in 2014 after financial regulators barred him from working on Wall Street over a raft of alleged violations.

Go big or go home … The $6 million lawsuit filed by former CEO Michael Mojtahedi alleges RocketStar “is nothing more than a Ponzi scheme… [that] has been predicated on Craddock’s ability to con new people each time the company has run out of money.” On its website, RocketStar says its work focuses on aerospike rocket engines and a “FireStar Fusion Drive, the world’s first electric propulsion device enhanced with nuclear fusion.” These are tantalizing technologies that have proven elusive for other rocket companies. RocketStar’s attorney told The Independent: “The company denies the allegations and looks forward to vindicating itself in court.”

Another record for SpaceX. Last Thursday, SpaceX launched a batch of clandestine SpaceX-built surveillance satellites for the National Reconnaissance Office from Vandenberg Space Force Base in California, Spaceflight Now reports. This was the latest in a series of flights populating the NRO’s constellation of low-Earth orbit reconnaissance satellites. What was unique about this mission was its use of a Falcon 9 first stage booster that flew to space just nine days prior with a NASA astronomy satellite. The successful launch broke the record for the shortest span between flights of the same Falcon 9 booster, besting a 13.5-day turnaround in November 2024.

A mind-boggling number of launches … This flight also marked the 450th launch of a Falcon 9 rocket since its debut in 2010, and the 139th within a 365-day period, despite suffering its first mission failure in nearly 10 years and a handful of other glitches. SpaceX’s launch pace is unprecedented in the history of the space industry. No one else is even close. In the last Rocket Report I authored, I wrote that SpaceX’s steamroller no longer seems to be rolling downhill. That may be the case as the growth in the Falcon 9 launch cadence has slowed, but it’s hard for me to see anyone else matching SpaceX’s launch rate until at least the 2030s.

Rocket Lab and Stoke Space find an on-ramp. Space Systems Command announced Thursday that it selected Rocket Lab and Stoke Space to join the Space Force’s National Security Space Launch (NSSL) program. The contracts have a maximum value of $5.6 billion, and the Space Force will dole out “task orders” for individual missions as they near launch. Rocket Lab and Stoke Space join SpaceX, ULA, and Blue Origin as eligible launch providers for lower-priority national security satellites, a segment of missions known as Phase 3 Lane 1 in the parlance of the Space Force. For these missions, the Space Force won’t require certification of the rockets, as the military does for higher-value missions in the so-called “Lane 2” segment. However, Rocket Lab and Stoke Space must complete at least one successful flight of their new Neutron and Nova rockets before they are cleared to launch national security payloads.

Stoked at Stoke … This is a big win for Rocket Lab and Stoke. For Rocket Lab, it bolsters the business case for the medium-class Neutron rocket it is developing for flights from Wallops Island, Virginia. Neutron will be partially reusable with a recoverable first stage. But Rocket Lab already has a proven track record with its smaller Electron launch vehicle. Stoke hasn’t launched anything, and it has lofty ambitions for a fully reusable two-stage rocket called Nova. This is a huge vote of confidence in Stoke. When the Space Force released its invitation for an on-ramp to the NSSL program last year, it said bidders must show a “credible plan for a first launch by December 2025.” Smart money is that neither company will launch its rockets by the end of this year, but I’d love to be proven wrong.

Falcon 9 deploys spy satellite. Monday afternoon, a SpaceX Falcon 9 took flight from Florida’s Space Coast and delivered a national security payload designed, built, and operated by the National Reconnaissance Office into orbit, Florida Today reports. Like almost all NRO missions, details about the payload are classified. The mission codename was NROL-69, and the launch came three-and-a-half days after SpaceX launched another NRO mission from California. While we have some idea of what SpaceX launched from California last week, the payload for the NROL-69 mission is a mystery.

Space sleuthing … There’s an online community of dedicated skywatchers who regularly track satellites as they sail overhead around dawn and dusk. The US government doesn’t publish the exact orbital parameters for its classified spy satellites (they used to), but civilian trackers coordinate with one another, and through a series of observations, they can produce a pretty good estimate of a spacecraft’s orbit. Marco Langbroek, a Dutch archeologist and university lecturer on space situational awareness, is one of the best at this, using publicly available information about the flight path of a launch to estimate when the satellite will fly overhead. He and three other observers in Europe managed to locate the NROL-69 payload just two days after the launch, plotting the object in an orbit between 700 and 1,500 kilometers at an inclination of 64.1 degrees to the equator. Analysts speculated this mission might carry a pair of naval surveillance spacecraft, but this orbit doesn’t match up well with any known constellations of NRO satellites.

NASA continues with Artemis II preps. Late Saturday night, technicians at Kennedy Space Center in Florida moved the core stage for NASA’s second Space Launch System rocket into position between the vehicle’s two solid-fueled boosters, Ars reports. Working inside the iconic 52-story-tall Vehicle Assembly Building, ground teams used heavy-duty cranes to first lift the butterscotch orange core stage from its cradle, then rotate it to a vertical orientation and lift it into a high bay, where it was lowered into position on a mobile launch platform. The 212-foot-tall (65-meter) core stage is the largest single hardware element for the Artemis II mission, which will send a team of four astronauts around the far side of the Moon and back to Earth as soon as next year.

Looking like a go … With this milestone, the slow march toward launch continues. A few months ago, some well-informed people in the space community thought there was a real possibility the Trump administration could quickly cancel NASA’s Space Launch System, the high-priced heavy-lifter designed to send astronauts from the Earth to the Moon. The most immediate possibility involved terminating the SLS program before it flies with Artemis II. This possibility appears to have been overcome by circumstances. The rockets most often mentioned as stand-ins for the Space Launch System—SpaceX’s Starship and Blue Origin’s New Glenn—aren’t likely to be cleared for crew missions for at least several years. The long-term future of the Space Launch System remains in doubt.

Space Force says Vulcan is good to go. The US Space Force on Wednesday announced that it has certified United Launch Alliance’s Vulcan rocket to conduct national security missions, Ars reports. “Assured access to space is a core function of the Space Force and a critical element of national security,” said Brig. Gen. Kristin Panzenhagen, program executive officer for Assured Access to Space, in a news release. “Vulcan certification adds launch capacity, resiliency, and flexibility needed by our nation’s most critical space-based systems.” The formal announcement closes a yearslong process that has seen multiple delays in the development of the Vulcan rocket, as well as two anomalies in recent years that were a further setback to certification.

Multiple options … This certification allows ULA’s Vulcan to launch the military’s most sensitive national security missions, a separate lot from those Rocket Lab and Stoke Space are now eligible for (as we report in a separate Rocket Report entry). It elevates Vulcan to launch these missions alongside SpaceX’s Falcon 9 and Falcon Heavy rockets. Vulcan will not be the next rocket that the company launches, however. First up is one of the company’s remaining Atlas V boosters, carrying Project Kuiper broadband satellites for Amazon. This launch could occur in April, although ULA has not set a date. This will be followed by the first Vulcan national security launch, which the Space Force says could occur during the coming “summer.”

Next three launches

March 29: Spectrum | “Going Full Spectrum” | Andøya Spaceport, Norway | 11: 30 UTC

March 29: Long March 7A | Unknown Payload | Wenchang Space Launch Site, China | 16: 05 UTC

March 30: Alpha | LM-400 | Vandenberg Space Force Base, California | 13: 37 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe Read More »

as-preps-continue,-it’s-looking-more-likely-nasa-will-fly-the-artemis-ii-mission

As preps continue, it’s looking more likely NASA will fly the Artemis II mission

NASA’s existing architecture still has a limited shelf life, and the agency will probably have multiple options for transporting astronauts to and from the Moon in the 2030s. A decision on the long-term future of SLS and Orion isn’t expected until the Trump administration’s nominee for NASA administrator, Jared Isaacman, takes office after confirmation by the Senate.

So, what is the plan for SLS?

There are different degrees of cancellation options. The most draconian would be an immediate order to stop work on Artemis II preparations. This is looking less likely than it did a few months ago and would come with its own costs. It would cost untold millions of dollars to disassemble and dispose of parts of Artemis II’s SLS rocket and Orion spacecraft. Canceling multibillion-dollar contracts with Boeing, Northrop Grumman, and Lockheed Martin would put NASA on the hook for significant termination costs.

Of course, these liabilities would be less than the $4.1 billion NASA’s inspector general estimates each of the first four Artemis missions will cost. Most of that money has already been spent for Artemis II, but if NASA spends several billion dollars on each Artemis mission, there won’t be much money left over to do other cool things.

Other options for NASA might be to set a transition point when the Artemis program would move off of the Space Launch System rocket, and perhaps even the Orion spacecraft, and switch to new vehicles.

Looking down on the Space Launch System for Artemis II. Credit: NASA/Frank Michaux

Another possibility, which seems to be low-hanging fruit for Artemis decision-makers, could be to cancel the development of a larger Exploration Upper Stage for the SLS rocket. If there are a finite number of SLS flights on NASA’s schedule, it’s difficult to justify the projected $5.7 billion cost of developing the upgraded Block 1B version of the Space Launch System. There are commercial options available to replace the rocket’s Boeing-built Exploration Upper Stage, as my colleague Eric Berger aptly described in a feature story last year.

For now, it looks like NASA’s orange behemoth has a little life left in it. All the hardware for the Artemis II mission has arrived at the launch site in Florida.

The Trump administration will release its fiscal-year 2026 budget request in the coming weeks. Maybe then NASA will also have a permanent administrator, and the veil will lift over the White House’s plans for Artemis.

As preps continue, it’s looking more likely NASA will fly the Artemis II mission Read More »

rocket-report:-starship-will-soon-fly-again;-gilmour-has-a-launch-date

Rocket Report: Starship will soon fly again; Gilmour has a launch date


One Falcon 9 launched an Intuitive Machines lunar lander, an asteroid prospector, and a NASA science probe.

Peter Beck, Rocket Lab’s founder and CEO, stands inside a test version of the “Hungry Hippo,” a nickname used to describe the clamshell-like nose cone of the Neutron rocket’s first stage booster. The fairing will open in flight to release Neutron’s second and payloads to continue into orbit, then close as the booster comes back to Earth for recovery. Credit: Rocket Lab

Welcome to Edition 7.33 of the Rocket Report! Phew, what a week for Rocket Lab! The company released a bevy of announcements in conjunction with its quarterly earnings report Thursday. Rocket Lab is spending a lot of money to develop the medium-lift rocket Neutron rocket, and as we’ll discuss below, a rocket landing platform and a new satellite design. For now, the company is sticking by its public statements that the Neutron rocket will launch this year—the official line is it will debut in the second half of 2025—but this schedule assumes near-perfect execution on the program. “We’ve always been clear that we run aggressive schedules,” said Peter Beck, Rocket Lab’s founder and CEO. The official schedule doesn’t quite allow me to invoke a strict interpretation of Berger’s Law, which states that if a rocket’s debut is predicted to happen in the fourth quarter of a year, and that quarter is six or more months away, the launch will be delayed. However, the spirit of the law seems valid here. This time last year, Rocket Lab targeted a first launch by the end of 2024, an aggressive target that has come and gone.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Australian startup sets a launch date. The first attempt to send an Australian-made rocket into orbit is set to take place no sooner than March 15, the Australian Broadcasting Corporation reports. Gilmour Space Technologies’ launch window announcement marks a major development for the company, which has been working towards a test launch for a decade. Gilmour previously hoped to launch its test rocket, Eris, in May 2024, but had to wait for the Australian government to issue a launch license and airspace approvals for the flight to go forward. Those are now in hand, clearing the last regulatory hurdle before liftoff.

Setting expectations … Gilmour’s Eris rocket is made of three stages powered by hybrid engines consuming a solid fuel and a liquid oxidizer. Eris is designed to haul payloads of up to 672 pounds (305 kilograms) to low-Earth orbit, and will launch from Bowen Orbital Spaceport in Queensland on Australia’s northeastern coast. Gilmour said it would be “very lucky” if the rocket reached orbit on first attempt. “Success means different things for different people, but ignition and liftoff will be huge,” said James Gilmour, the company’s co-founder. (submitted by ZygP)

Blue Origin is keeping a secret. Blue Origin conducted the tenth crewed flight of its New Shepard suborbital vehicle Tuesday, carrying six people, one of whom remained at least semi-anonymous, Space News reports. The five passengers Blue Origin identified come from business and entertainment backgrounds, but in a break from past missions, the company did not disclose the identity of the sixth person, with hosts of the company webcast saying that individual “requested we not share his name today.” Photos released by the company before the launch, and footage from the webcast, showed that person to be a man wearing a flight suit with an “R. Wilson” nametag, and the NS-30 mission patch also included “Wilson” with the names of the other members of the crew. Not disclosing the name of someone who has been to space has little precedent.

Big names on NS-31 … Some of the passengers Blue Origin will fly on the next New Shepard crew mission lack the anonymity of R. Wilson. The next flight, designated NS-31, will carry an all-female crew, including music star Katy Perry, CBS host Gayle King, and Lauren Sánchez, a former journalist who is engaged to Blue Origin’s founder, Jeff Bezos. Blue Origin identified the other three passengers as Aisha Bowe, Amanda Ngyuen, and Kerianne Flynn. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is still blowing through cash. Virgin Galactic reported a net loss of $347 million in 2024, compared to a $502 million net loss in 2023, with the improvement primarily driven by lower operating expenses, the company said this week in a quarterly earnings release. These lower operating expenses are tied to Virgin Galactic’s decision to suspend operations of its VSS Unity suborbital rocket plane last year to focus investment into a new series of suborbital spacecraft known as Delta-class ships. Virgin Galactic said cash and cash equivalents fell 18 percent from the same period a year ago to $178.6 million. Investors have been eager for details on when it would resume—and then ramp up—flights to increase sales and cash in on a backlog of around 700 ticket holders, Bloomberg reports.

March toward manufacturing … Virgin Galactic said it plans to start assembling its first Delta-class ship in March, with a first flight targeted for the summer of 2026, two years after it stopped flying VSS Unity. The Delta ships will be easier to recycle between flights, and will carry six paying passengers, rather than the four VSS Unity carried on each flight. Company officials believe a higher flight rate with more passengers will bring in significantly more revenue, which was reported at just $430,000 in the fourth quarter of 2024. (submitted by EllPeaTea)

Japanese customers seem to love Rocket Lab. While Rocket Lab is developing the larger Neutron rocket, the company’s operational Electron launch vehicle continues to dominate the market for dedicated launches of small satellites. Rocket Lab announced Thursday it signed a new multi-launch deal with iQPS, a Japan-based Earth imaging company. The new deal follows an earlier multi-launch contract signed with iQPS in 2024 and brings the total number of booked dedicated Electron launches for iQPS to eight.

Radar is all the rage … These eight Electron launches in 2025 and 2026 will help iQPS build out its planned constellation of 36 radar remote sensing satellites capable of imaging the Earth day and night, and through any weather. The new deal is one of the largest Electron launch agreements to date, second only to Rocket Lab’s ten launch deal with another Japanese radar constellation operator, Synspective, signed last year. (submitted by zapman987)

Falcon 9 launch targets Moon and asteroid. With two commercial Moon landers already on their way, Houston-based Intuitive Machines launched its second robotic lander atop a SpaceX Falcon 9 rocket Wednesday, CBS News reports. Given the on-time launch and assuming no major problems, the Athena lander is expected to descend to touchdown on a flat mesa-like structure known as Mons Mouton on March 6, setting down just 100 miles from the Moon’s south pole—closer than any other spacecraft has attempted. Intuitive Machines became the first company to successfully land a spacecraft on the Moon last year, but the Athena lander will pursue more complex goals. It will test a NASA-provided drill designed to search for subsurface ice, deploy a small “micro-rover,” and dispatch a rocket-powered drone to explore a permanently shadowed crater.

Hitching a ride … The Athena lander didn’t take up all the capacity of the Falcon 9 rocket. Three other spacecraft also rocketed into space Wednesday night. These rideshare payloads were AstroForge’s commercially developed Odin asteroid prospector to search for potentially valuable mineral deposits, NASA’s Lunar Trailblazer satellite to characterize lunar ice from a perch in lunar orbit, and a compact space tug from Epic Aerospace. (submitted by EllPeaTea)

This rocket got a visitor for the first time since 2009. Astroscale’s ADRAS-J mission became the first spacecraft (at least in the unclassified world) to approach a piece of space junk in low-Earth orbit, Ars reports. This particular object, a derelict upper stage from a Japanese H-IIA rocket, has been in orbit since 2009. It’s one of about 2,000 spent rocket bodies circling the Earth and one of more than 45,000 objects in orbit tracked by US Space Command. Astroscale, based in Tokyo, built and launched the ADRAS-J mission in partnership with the Japanese space agency as a demonstration to show how a commercial satellite could rendezvous with an object in orbit that was never designed to receive visitors.

Next steps … ADRAS-J worked like a champ, closing in to a distance of less than 50 feet (15 meters) from the H-IIA rocket as it orbited several hundred miles above the Earth. The rocket is a “non-cooperative” object representative of other large pieces of space junk, which Astroscale wants to remove from orbit with a series of trash collecting satellites like ADRAS-J. But this demo only validated part of the technology required for space debris removal. Japan’s space agency and Astroscale are partnering on another mission, ADRAS-J2, for launch in 2027 to go up and latch on to the same H-IIA rocket and steer it out of orbit toward a controlled reentry over the ocean.

An update on Falcon 9’s upper stage. SpaceX said that a Falcon 9 upper stage that reentered over Europe earlier this month suffered a propellant leak that prevented it from doing a controlled reentry, Space News reports. The upper stage was placed in orbit on a February 1 launch from Vandenberg Space Force Base in California. After deploying its payload of 22 Starlink satellites, the upper stage was expected to perform a burn to enable a controlled reentry over the ocean, a standard procedure on most Falcon 9 launches to low-Earth orbit. The stage, though, did not appear to perform the burn and remained in orbit. Its orbit decayed from atmospheric drag and the stage reentered over Europe on February 19. Debris from the Falcon 9 second stage, including composite overwrapped pressure vessels, fell in Poland, landing near the city of Poznań.

Higher than expected body rates … In an update posted to its website this week, SpaceX blamed the upper stage anomaly on a liquid oxygen leak. “During the coast phase of this Starlink mission, a small liquid oxygen leak developed, which ultimately drove higher than expected vehicle body rates,” SpaceX said. SpaceX aborted the deorbit burn and instead passivated the upper stage, a process where the rocket discharges energy from its batteries and vents leftover propellant from its tanks to minimize the risk of a break-up in orbit. This was the third incident involving a Falcon 9 upper stage in a little more than six months. (submitted by EllPeaTea)

Rocket Lab’s reveals “Return On Investment.” Rocket Lab’s Neutron rocket is designed for partial reusability, and the company unveiled Thursday an important piece of infrastructure to make this a reality. Neutron’s first stage booster will land on a modified barge named “Return On Investment” measuring around 400 feet (122 meters) wide, somewhat bigger than SpaceX’s drone ships used for Falcon 9 landings at sea. In order to prep the barge for rocket duty, the company is adding autonomous ground support equipment to capture and secure the landed Neutron, blast shielding to protect equipment during Neutron landings, and station-keeping thrusters for precise positioning. It should be ready to enter service in 2026. Rocket Lab also has the option to return the Neutron first stage back to the launch site when mission parameters allow the rocket to reserve enough propellant to make the return journey.

More news from Rocket Lab … Continuing the firehose of news from Rocket Lab this week, the company announced a new satellite design called “Flatellite” that looks remarkably similar to SpaceX’s Starlink satellites. The satellite is flat in shape, hence its name, and stackable to fit as many spacecraft as possible into the envelope of a rocket’s payload fairing. Rocket Lab said the new satellite “can be produced in high volumes and (is) tailored for large constellations, targeting high value applications and national security missions.” (submitted by zapman987)

The writing is on the wall for SLS. The lights may be starting to go out for NASA’s Space Launch System program. On Wednesday, one of the Republican space policy leaders most consistently opposed to commercial heavy lift rockets over the last decade—as an alternative to NASA’s large SLS rocket—has changed his mind, Ars reports. “We need an off-ramp for reliance on the SLS,” said Scott Pace, director of the Space Policy Institute at George Washington University, in written testimony before a congressional hearing about US space policy.

Not keeping Pace … A physicist and influential policy expert, Pace has decades of experience researching and writing space policy. He has served in multiple Republican administrations, most recently as executive secretary of the National Space Council from 2017 to 2020. He strongly advocated for the SLS rocket after Congress directed NASA to develop it in 2011. As part of his policy recommendations, Pace said NASA should seek to use commercial providers of heavy lift launch so that NASA can send “multiple” crew and cargo missions to the Moon each year. He notes that the SLS rocket is not reusable and is incapable of a high flight rate. Commercial options from SpaceX, Blue Origin, and United Launch Alliance are now available, Pace wrote.

The verdict is in for Starship Flight 7. SpaceX believes the spectacular break-up of Starship’s upper stage during its most recent test flight was caused by a harmonic response that stressed onboard hardware, leading to a fire and loss of the vehicle, Aviation Week reports. Higher-than-expected vibrations stressed hardware in the ship’s propulsion system, triggering propellant leaks and sustained fires until the test flight ended prematurely. The rocket broke apart and deposited debris over the Turks and Caicos Islands and the Atlantic Ocean, and forced dozens of commercial and private aircraft to delay their flights or steer into safer airspace.

Whole lotta shaking … SpaceX’s description of the problem as a harmonic response suggests vibrations during Starship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing. SpaceX completed an extended duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight, which could launch from South Texas as soon as Monday.

Next three launches

March 1: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 10: 00 UTC

March 2: Ceres 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 08: 10 UTC

March 2: Soyuz-2.1b | Glonass-K2 No. 14L | Plesetsk Cosmodrome, Russia | 22: 22 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Starship will soon fly again; Gilmour has a launch date Read More »

nasa-says-orion’s-heat-shield-is-good-to-go-for-artemis-ii—but-does-it-matter?

NASA says Orion’s heat shield is good to go for Artemis II—but does it matter?

“We have since determined that while the capsule was dipping in and out of the atmosphere, as part of that planned skip entry, heat accumulated inside the heat shield outer layer, leading to gases forming and becoming trapped inside the heat shield,” said Pam Melroy, NASA’s deputy administrator. “This caused internal pressure to build up and led to cracking and uneven shedding of that outer layer.”

An independent team of experts concurred with NASA’s determination of the root cause, Melroy said.

NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Jim Free, and Artemis II Commander Reid Wiseman speak with reporters Thursday in Washington, DC. Credit: NASA/Bill Ingalls

Counterintuitively, this means NASA engineers are comfortable with the safety of the heat shield if the Orion spacecraft reenters the atmosphere at a slightly steeper angle than it did on Artemis I and spends more time subjected to higher temperatures.

When the Orion spacecraft climbed back out of the atmosphere during the Artemis I skip reentry, a period known as the skip dwell, NASA said heating rates decreased and thermal energy accumulated inside the heat shield’s Avcoat material. This generated gases inside the heat shield through a process known as pyrolysis. 

“Pyrolysis is just burning without oxygen,” said Amit Kshatriya, deputy associate administrator of NASA’s Moon to Mars program. “We learned that as part of that reaction, the permeability of the Avcoat material is essential.”

During the skip dwell, “the production of those gases was higher than the permeability could tolerate, so as a result, pressure differential was created. That pressure led to cracks in plane with the outer mold line of the vehicle,” Kshatriya said.

NASA didn’t know this could happen because engineers tested the heat shield on the ground at higher temperatures than the Orion spacecraft encountered in flight to prove the thermal barrier could withstand the most extreme possible heating during reentry.

“What we missed was this critical region in the middle, and we missed that region because we didn’t have the test facilities to produce the low-level energies that occur during skip and dwell,” Kshatriya said Thursday.

During the investigation, NASA replicated the charring and cracking after engineers devised a test procedure to expose Avcoat heat shield material to the actual conditions of the Artemis I reentry.

So, for Artemis II, NASA plans to modify the reentry trajectory to reduce the skip reentry’s dwell time. Let’s include some numbers to help illustrate the difference.

The distance traveled by Artemis I during the reentry phase of the mission was more than 3,000 nautical miles (3,452 miles; 5,556 kilometers), according to Kshatriya. This downrange distance will be limited to no more than 1,775 nautical miles (2,042 miles; 3,287 kilometers) on Artemis II, effectively reducing the dwell time the Orion spacecraft spends in the lower heating regime that led to the cracking on Artemis I.

NASA’s inspector general report in May included new images of Orion’s heat shield that the agency did not initially release after the Artemis I mission. Credit: NASA Inspector General

With this change, Kshatriya said NASA engineers don’t expect to see the heat shield erosion they saw on Artemis I. “The gas generation that occurs during that skip dwell is sufficiently low that the environment for crack generation is not going to overwhelm the structural integrity of the char layer.”

For future Orion spaceships, NASA and its Orion prime contractor, Lockheed Martin, will incorporate changes to address the heat shield’s permeability problem.

Waiting for what?

NASA officials discussed the heat shield issue, and broader plans for the Artemis program, in a press conference in Washington on Thursday. But the event’s timing added a coat of incredulity to much of what they said. President-elect Donald Trump, with SpaceX founder Elon Musk in his ear, has vowed to cut wasteful government spending.

NASA says Orion’s heat shield is good to go for Artemis II—but does it matter? Read More »

nasa-is-stacking-the-artemis-ii-rocket,-implying-a-simple-heat-shield-fix

NASA is stacking the Artemis II rocket, implying a simple heat shield fix

A good sign

The readiness of the Orion crew capsule, where the four Artemis II astronauts will live during their voyage around the Moon, is driving NASA’s schedule for the mission. Officially, Artemis II is projected to launch in September of next year, but there’s little chance of meeting that schedule.

At the beginning of this year, NASA officials ruled out any opportunity to launch Artemis II in 2024 due to several technical issues with the Orion spacecraft. Several of these issues are now resolved, but NASA has not released any meaningful updates on the most significant problem.

This problem involves the Orion spacecraft’s heat shield. During atmospheric reentry at the end of the uncrewed Artemis I test flight in 2022, the Orion capsule’s heat shield eroded and cracked in unexpected ways, prompting investigations by NASA engineers and an independent panel.

NASA’s Orion heat shield inquiry ran for nearly two years. The investigation has wrapped up, two NASA officials said last month, but they declined to discuss any details of the root cause of the heat shield issue or the actions required to resolve the problem on Artemis II.

These corrective options ranged from doing nothing to changing the Orion spacecraft’s reentry angle to mitigate heating or physically modifying the Artemis II heat shield. In the latter scenario, NASA would have to disassemble the Orion spacecraft, which is already put together and is undergoing environmental testing at Kennedy Space Center. This would likely delay the Artemis II launch by a couple of years.

In August, NASA’s top human exploration official told Ars that the agency would hold off on stacking the SLS rocket until engineers had a good handle on the heat shield problem. There are limits to how long the solid rocket boosters can remain stacked vertically. The joints connecting each segment of the rocket motors are certified for one year. This clock doesn’t actually start ticking until NASA stacks the next booster segments on top of the lowermost segments.

However, NASA waived this rule on Artemis I when the boosters were stacked nearly two years before the successful launch.

A NASA spokesperson told Ars on Wednesday that the agency had nothing new to share on the Orion heat shield or what changes, if any, are required for the Artemis II mission. This information should be released before the end of the year, she said. At the same time, NASA could announce a new target launch date for Artemis II at the end of 2025, or more likely in 2026.

But because NASA gave the “go” for SLS stacking now, it seems safe to rule out any major hardware changes on the Orion heat shield for Artemis II.

NASA is stacking the Artemis II rocket, implying a simple heat shield fix Read More »

rocket-delivered-to-launch-site-for-first-human-flight-to-the-moon-since-1972

Rocket delivered to launch site for first human flight to the Moon since 1972

Rocket delivered to launch site for first human flight to the Moon since 1972

The central piece of NASA’s second Space Launch System rocket arrived at Kennedy Space Center in Florida this week. Agency officials intend to start stacking the towering launcher in the next couple of months for a mission late next year carrying a team of four astronauts around the Moon.

The Artemis II mission, officially scheduled for September 2025, will be the first voyage by humans to the vicinity of the Moon since the last Apollo lunar landing mission in 1972. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian mission specialist Jeremy Hansen will ride the SLS rocket away from Earth, then fly around the far side of the Moon and return home inside NASA’s Orion spacecraft.

“The core is the backbone of SLS, and it’s the backbone of the Artemis mission,” said Matthew Ramsey, NASA’s mission manager for Artemis II. “We’ve been waiting for the core to get here because all the integrated tests and checkouts that we do have to have the core stage. It has the flight avionics that drive the whole system. The boosters are also important, but the core is really the backbone for Artemis. So it’s a big day.”

The core stage rolled off of NASA’s Pegasus barge at Kennedy early Wednesday, following a weeklong ocean voyage from New Orleans, where Boeing builds the rocket under contract to NASA.

Ramsey told Ars that ground teams hope to begin stacking the rocket’s two powerful solid rocket boosters on NASA’s mobile launcher platform in September. Each booster, supplied by Northrop Grumman, is made of five segments with pre-packed solid propellant and a nose cone. All the pieces for the SLS boosters are at Kennedy and ready for stacking, Ramsey said.

The SLS upper stage, built by United Launch Alliance, is also at the Florida launch site. Now, the core stage is at Kennedy. In August or September, NASA plans to deliver the two remaining elements of the SLS rocket to Florida. These are the adapter structures that will connect the core stage to the upper stage, and the upper stage to the Orion spacecraft.

A heavy-duty crane inside the cavernous Vehicle Assembly Building (VAB) will hoist each segment of the SLS boosters into place on the launch platform. Once the boosters are fully stacked, ground teams will lift the 212-foot (65-meter) core stage vertical in the transfer aisle running through the center of the VAB. A crane will then lower the core stage between the boosters. That could happen as soon as December, according to Ramsey.

Then comes the launch vehicle stage adapter, the upper stage, the Orion stage adapter, and finally, the Orion spacecraft itself.

Moving toward operations

NASA’s inspector general reported in 2022 that NASA’s first four Artemis missions will each cost $4.1 billion. Subsequent documents, including a Government Accountability Office report last year, suggest the expendable SLS core stage is responsible for at least a quarter of the cost for each Artemis flight.

The core stage for Artemis II is powered by four hydrogen-fueled RS-25 engines produced by Aerojet Rocketdyne. Two of the reusable engines for Artemis II have flown on the space shuttle, and the other two RS-25s were built in the shuttle era but never flew. Each SLS launch will put the core stage and its engines in the Atlantic Ocean.

Steve Wofford, who manages the stages office for the SLS program at NASA’s Marshall Space Flight Center, told Ars there are “no major configuration differences” between the core stages for Artemis I and Artemis II. The only minor differences involve instrumentation that NASA wanted on Artemis I to measure pressures, accelerations, vibrations, temperatures, and other parameters on the first flight of the Space Launch System.

“We are still working off some flight observations that we made on Artemis I, but no showstoppers,” Wofford said. “On the first article, the test flight, Artemis I, we really loaded it up. That’s a golden opportunity to learn as much as you can about the vehicle and the flight regime, and anchor all your models… As you progress, you need less and less of that. So Core Stage 2 will have less development flight instrumentation than Core Stage 1, and then Core Stage 3 will have less still.”

Rocket delivered to launch site for first human flight to the Moon since 1972 Read More »