Space

the-ax-has-become-an-important-part-of-the-space-force’s-arsenal

The ax has become an important part of the Space Force’s arsenal

“All those traditional primes opted out of this event, every single one,” Hammett said. “We’re cultivating an A-team who’s willing to work with us, who’s hungry, who wants to bring affordability and speed, and it’s not the existing industry base.”

Hammett’s office didn’t set out to banish the big defense contractors. Simply put, he said they haven’t performed or aren’t interested in going in the direction Space RCO wants to go.

“I’ve terminated 11 major contracts in less than three years,” Hammett said. “Eighty-five percent of those were with traditional defense primes.” Most of these programs are classified, so it doesn’t become news when a contract is canceled.

“We try to fix the programs,” Hammett said. “We work with the performers, but if they can’t get right, and if we have program baselines where they’re now exceeding it by 100 percent in cost or schedule… we’re going to fire them and start again.”

At the same time, venture-backed companies seem to emerge every day from the ether of Silicon Valley or one of the nation’s other tech corridors.

“There’s a lot of opportunity to bring other performers into the portfolio, but there are lots of barriers,” Hammett said. One of those barriers is that leadership at many startups don’t have a security clearance. Many small companies don’t use the certified accounting systems the government usually requires for federal contracts. 

“You have to be willing to modify your approach, your acquisition strategies, those types of things, so I have directed my team to open the aperture, to find the A-team, wherever the A-team lives, because it doesn’t seem to be in our current portfolio,” Hammett said.

The Space Force has launched three generations of GPS satellites capable of broadcasting a jam-resistant military-grade navigation signal, but ground system delays have kept US forces from fully adopting it. This image shows a GPS III satellite at Lockheed Martin. Credit: Lockheed Martin

There’s still a place for the Pentagon’s incumbent contractors, according to Hammett. Small companies like the ones at Space RCO’s pitch lack the national, or even global, footprint to execute the military’s most expensive programs.

“We’re trying to build the first of something new, different, at a price point that we can accept,” Hammett said. “That’s what these types of companies are trying to do. And we’re not having to pay the lion’s share of the cost for that because VC [venture capital] firms and others are kick-starting them.”

Executives at Lockheed Martin, Northrop Grumman, Boeing, and other traditional defense companies have become warier of bidding on government programs, especially fixed-price contracts where financial risk is transferred from the government to the contractor.

The CEO of L3Harris, another established defense contractor, said in 2023 that his company has also declined to bid on fixed-price development contracts. L3Harris leads development of a software system called ATLAS to manage data from a network of sensors tracking rocket launches and objects in orbit. The program is over budget and was supposed to be ready for action in 2022, but it still isn’t operational.

RTX is in charge of another troubled military space program. The Next-Generation Operational Control System, known as OCX, is designed to allow military forces, including airplanes, ships, and ground vehicles, to access a jam-resistant GPS signal that satellites have been beaming from space since 2005. Twenty years later, the military’s weapons systems still haven’t widely adopted this M-code signal because of OCX delays.

Both programs are managed by Space Systems Command, the unit that has traditionally been responsible for buying hardware and software for military space programs. SSC, too, hasn’t shied away recently from taking the hatchet to some problem projects. Last year, SSC confirmed it kicked RTX off a program to develop three next-generation missile warning satellites because it was over budget, behind schedule, and faced “unresolved design challenges.”

The ax has become an important part of the Space Force’s arsenal Read More »

can-nasa-remain-nonpartisan-when-basic-spaceflight-truths-are-shredded?

Can NASA remain nonpartisan when basic spaceflight truths are shredded?

It looked like the final scene of a movie, the denouement of a long adventure in which the good guys finally prevail. Azure skies and brilliant blue seas provided a perfect backdrop on Tuesday evening as a spacecraft carrying four people neared the planet’s surface.

“Just breathtaking views of a calm, glass-like ocean off the coast of Tallahassee, Florida,” commented Sandra Jones, a NASA spokesperson, during the webcast co-hosted by the space agency and SpaceX, whose Dragon vehicle returned the four astronauts from orbit.

A drone near the landing site captured incredible images of Crew Dragon Freedom as it slowly descended beneath four parachutes. Most of NASA’s astronauts today, outside of the small community of spaceflight devotees, are relatively anonymous. But not two of the passengers inside Freedom, Butch Wilmore and Suni Williams. After nine months of travails, 286 days to be precise, they were finally coming home.

Dragon continued its stately descent, falling to 400 meters, then 300, and then 200 above the ocean.

Kate Tice, an engineer from SpaceX on the webcast, noted that touchdown was imminent. “We’re going to stand by for splashdown located in the Gulf of America,” she said.

Ah, yes. The Gulf of America.

This is why we can’t have nice things.

A throne of lies

For those of us who have closely followed the story of Wilmore and Williams over the last nine months—and Ars Technica has had its share of exclusive stories about this long and strange saga—the final weeks before the landing have seen it take a disturbing turn.

Can NASA remain nonpartisan when basic spaceflight truths are shredded? Read More »

here’s-the-secret-to-how-firefly-was-able-to-nail-its-first-lunar-landing

Here’s the secret to how Firefly was able to nail its first lunar landing


Darkness fell over Mare Crisium, ending a daily dose of dazzling images from the Moon.

Firefly’s X-band communications antenna (left) is marked with the logos of NASA, Firefly Aerospace, and the US flag. Credit: Firefly Aerospace

Firefly Aerospace’s Blue Ghost science station accomplished a lot on the Moon in the last two weeks. Among other things, its instruments drilled into the Moon’s surface, tested an extraterrestrial vacuum cleaner, and showed that future missions could use GPS navigation signals to navigate on the lunar surface.

These are all important achievements, gathering data that could shed light on the Moon’s formation and evolution, demonstrating new ways of collecting samples on other planets, and revealing the remarkable reach of the US military’s GPS satellite network.

But the pièce de résistance for Firefly’s first Moon mission might be the daily dose of imagery that streamed down from the Blue Ghost spacecraft. A suite of cameras recorded the cloud of dust created as the lander’s engine plume blew away the uppermost layer of lunar soil as it touched down March 2 in Mare Crisium, or the Sea of Crises. This location is in a flat basin situated on the upper right quadrant of the side of the Moon always facing the Earth.

Other images from Firefly’s lander showed the craft shooting tethered electrodes out onto the lunar surface, like a baseball outfielder trying to throw out a runner at home plate. Firefly’s cameras also showed the lander’s drill as it began to probe several meters into the Moon’s crust.

The first Blue Ghost mission is part of NASA’s Commercial Lunar Payload Services (CLPS) program established in 2018 to partner with US companies for cargo transportation to the Moon. Firefly is one of 13 companies eligible to compete for CLPS missions, precursors to future astronaut landings on the Moon under NASA’s Artemis program.

Now, Firefly finds itself at the top of the pack of firms seeking to gain a foothold at the Moon.

Blue Ghost landed just after sunrise at Mare Crisium, an event shown in the blow video captured with four cameras mounted on the lander to observe how its engine plume interacted with loose soil on the lunar surface. The information will be useful as NASA plans to land astronauts on the Moon in the coming years.

“Although the data is still preliminary, the 3,000-plus images we captured appear to contain exactly the type of information we were hoping for in order to better understand plume-surface interaction and learn how to accurately model the phenomenon based on the number, size, thrust and configuration of the engines,” said Rob Maddock, project manager for NASA’s SCALPSS experiment.

One of the vehicle’s payloads, named Lunar PlanetVac, dropped from the bottom of the lander and released a blast of gas to blow fine-grained lunar soil into a collection chamber for sieving. Provided by a company named Honeybee Robotics, this device could be used as a cheaper alternative to other sample collection methods, such as robotic arms, on future planetary science missions.

Just over 4 days on the Moon’s surface and #BlueGhost is checking off several science milestones! 8 out of 10 @NASA payloads, including LPV, EDS, NGLR, RAC, RadPC, LuGRE, LISTER, and SCALPSS, have already met their mission objectives with more to come. Lunar PlanetVac for example… pic.twitter.com/i7pOg70qYi

— Firefly Aerospace (@Firefly_Space) March 6, 2025

After two weeks of pioneering work, the Blue Ghost lander fell into darkness Sunday when the Sun sank below the horizon, robbing it of solar power and plunging temperatures below minus 200° Fahrenheit (148°Celcius). The spacecraft’s internal electronics likely won’t survive the two-week-long lunar night.

A precoded message from Blue Ghost marked the moment Sunday afternoon, signaling a transition to “monument mode.”

“Goodnight friends,” Blue Ghost radioed Firefly’s mission control center in Central Texas. “After exchanging our final bits of data, I will hold vigil in this spot in Mare Crisium to watch humanity’s continued journey to the stars. Here, I will outlast your mightiest rivers, your tallest mountains, and perhaps even your species as we know it.”

Blue Ghost’s legacy is now secure as the first fully successful commercial lunar lander. Its two-week mission was perhaps just as remarkable for what didn’t happen as it was for what did. The spacecraft encountered no significant problems on its transit to the Moon, its final descent, or during surface operations.

One of the few surprises of the mission was that the lander got hotter a little sooner than engineers predicted. At lunar noon, when the Sun is highest in the sky, temperatures can soar to 250° F (121° C).

“We started noticing that the lander was getting hotter than we expected, and we couldn’t really figure out why, because it was a little early for lunar noon,” Ray Allensworth, Firefly’s spacecraft program director, told Ars. “So we went back and started evaluating and realized that the crater that we landed next to was actually reflecting a really significant amount of heat. So we went back and we updated our thermal models, incorporated that crater into it, and it matched the environment we were seeing.”

Early Friday morning, the Blue Ghost spacecraft captured the first high-definition views of a total solar eclipse from the Moon. At the same time that skywatchers on Earth were looking up to see the Moon turn an eerie blood red, Firefly’s cameras were looking back at us as the Sun, Earth, and Moon moved into alignment and darkness fell at Mare Crisium.

Diamond ring

The eclipse was a bonus for Firefly. It just happened to occur during the spacecraft’s two-week mission at the Moon, the timing of which was dependent on numerous factors, ranging from the readiness of the Blue Ghost lander to weather conditions at its launch site in Florida.

“We weren’t actually planning to have an eclipse until a few months prior to our launch, when we started evaluating and realizing that an eclipse was happening right before lunar sunset,” Allensworth said. “So luckily, that gave us some time to work some procedures and basically set up what we wanted to take images of, what cameras we wanted to run.”

The extra work paid off. Firefly released an image Friday showing a glint of sunlight reaching around the curvature of the Earth, some 250,000 miles (402,000 kilometers) away. This phenomenon is known as the “diamond ring” and is a subject of pursuit for many eclipse chasers, who travel to far-flung locations for a few minutes of totality.

A “diamond ring” appears around the edge of the Earth, a quarter-million miles from Firefly’s science station on the lunar surface. Credit: Firefly Aerospace

The Blue Ghost spacecraft, named for a species of firefly, took eclipse chasing to new heights. Not only did it see the Earth block the Sun from an unexplored location on the Moon, but the lander fell into shadow for 2 hours and 16 minutes, about 18 times longer than the longest possible total solar eclipse on the Earth.

The eclipse presented challenges for Firefly’s engineers monitoring the mission from Texas. Temperatures at the spacecraft’s airless landing site plummeted as darkness took hold, creating what Allensworth called a “pseudo lunar night.”

“We were seeing those temperatures rapidly start dropping,” Allensworth said Friday. “So it was kind of an interesting game of to play with the hardware to keep everything in its temperature bounds but also still powered on and capturing data.”

Shaping up

Using navigation cameras and autonomous guidance algorithms, the spacecraft detected potential hazards at its original landing site and diverted to a safer location more than 230 feet (70 meters) away, according to Allensworth.

Finally happy with the terrain below, Blue Ghost’s computer sent the command for landing, powered by eight thrusters pulsing in rapid succession to control the craft’s descent rate. The landing was gentler than engineers anticipated, coming down at less than 2.2 mph (1 meter per second).

According to preliminary data, Blue Ghost settled in a location just outside of its 330-foot (100-meter) target landing ellipse, probably due to the last-minute divert maneuvers ordered by the vehicle’s hazard avoidance system.

It looks like we’re slightly out of it, but it’s really OK,” Allensworth said. “NASA has told us, more than anything, that they want us to make sure we land softly… They seem comfortable where we’re at.”

Firefly originally intended to develop a spacecraft based on the design of Israel’s Beresheet lander, which was the first private mission to attempt a landing on the Moon in 2019. The spacecraft crashed, and Firefly opted to go with a new design more responsive to NASA’s requirements.

“Managing the center of gravity and the mass of the lander is most significant, and that informs a lot of how it physically takes shape,” Allensworth said. “So we did want to keep certain things in mind about that, and that really is what led to the lander being wider, shorter, broader. We have these bigger foot pads on there. All of those things were very intentional to help make the lander as stable and predictable as possible.”

Firefly’s Blue Ghost lander, seen here inside the company’s spacecraft manufacturing facility in Cedar Park, Texas. Credit: Stephen Clark/Ars Technica

These design choices must happen early in a spacecraft’s development. Landing on the Moon comes with numerous complications, including an often-uneven surface and the lack of an atmosphere, rendering parachutes useless. A lander targeting the Moon must navigate itself to a safe landing site without input from the ground.

The Odysseus, or Nova-C, lander built by Intuitive Machines snapped one of its legs and fell over on its side after arriving on the Moon last year. The altimeter on Odysseus failed, causing it to come down with too much horizontal velocity. The lander returned some scientific data from the Moon and qualified as a partial success. The spacecraft couldn’t recharge its batteries after landing on its side, and Odysseus shut down a few days after landing.

The second mission by Intuitive Machines reached the Moon on March 6, but it suffered the same fate. After tipping over, the Athena lander succumbed to low power within hours, preventing it from accomplishing its science mission for NASA.

The landers designed by Intuitive Machines are tall and skinny, towering more than 14 feet (4.3 meters) tall with a width of about 5.2 feet (1.6 meters). The Blue Ghost vehicle is short and squatty in shape—about 6.6 feet tall and 11.5 feet wide (2-by-3.5 meters). Firefly’s approach requires fewer landing legs than Intuitive Machines—four instead of six.

Steve Altemus, co-founder and CEO of Intuitive Machines, defended the design of his company’s lander in a press briefing after the second lunar landing tip-over earlier this month. The Nova-C lander isn’t too top-heavy for a safe landing because most of its cargo attaches to the bottom of the spacecraft, and for now, Altemus said Intuitive Machines is not considering a redesign.

Intuitive Machines stacked its two fuel and oxidizer tanks on top of each other, resulting in a taller vehicle. The Nova-C vehicle uses super-cold methane and liquid oxygen propellants, enabling a fast journey to the Moon over just a few days. The four propellant tanks on Blue Ghost are arranged in a diagonal configuration, with two containing hydrazine fuel and two holding an oxidizer called nitrogen tetroxide. Firefly’s Blue Ghost took about six weeks to travel from launch until landing.

The design trade-off means Firefly’s lander is heavier, with four tanks instead of two, according to Will Coogan, Blue Ghost’s chief engineer at Firefly. By going with a stockier lander design, Firefly needed to install four tanks because the spacecraft’s fuel and oxidizer have different densities. If Firefly went with just two tanks side-by-side, the spacecraft’s center of mass would change continually as it burns propellant during the final descent to the Moon, creating an unnecessary problem for the lander’s guidance, navigation, and control system to overcome.

“You want to avoid that,” Coogan told Ars before Blue Ghost’s launch. “What you can do is you can either get four tanks and have fuel and oxidizer at diagonal angles, and then you’re always centered, or you can stay with two tanks, and you can stack them.”

A camera on Firefly’s Blue Ghost lander captured a view of its shadow after touching down on the Moon just after sunrise on March 2. Earth looms over the horizon. Credit: Firefly Aerospace

The four landing legs on the Blue Ghost vehicle have shock-absorbing feet, with bowl-shaped pads able to bend if the lander comes down on a rock or a slope.

“If we did come in a little bit faster, we needed the legs to be able to take that, so we tested the legs really significantly on the ground,” Allensworth said. “We basically loaded them up on a makeshift weight bench at different angles and slammed it into the ground, slammed it into concrete, slammed it into regular simulant rocks, boulders, at different angles to really characterize what the legs could do.

“It’s actually really funny, because one of the edge cases that we didn’t test is if we came down very lightly, with almost no acceleration,” she said. “And that was the case that the lander landed in. I was joking with our structural engineer that he wasted all his time.”

Proof positive

Firefly delivered 10 NASA-sponsored science and technology demonstration experiments to the lunar surface, operating under contract with NASA’s CLPS program. CLPS builds on the commercial, service-based business model of NASA’s commercial cargo and crew program for transportation to the International Space Station.

NASA officials knew this approach was risky. The last landing on the Moon by a US spacecraft was the last Apollo mission in 1972, and most of the companies involved in CLPS are less than 20 years old, with little experience in deep space missions.

A Pittsburgh company named Astrobotic failed to reach the Moon on its first attempt in January 2024. The next month, Houston-based Intuitive Machines landed its Nova-C spacecraft on the lunar surface, but it tipped over after one of its legs snapped at the moment of touchdown.

Firefly, based in Cedar Park, Texas, was the third company to try a landing. Originally established as a rocket developer, Firefly signed up to be a CLPS provider and won a $101 million contract with NASA in 2021 to transport a government-funded science package to the Moon. NASA’s instruments aboard the Blue Ghost lander cost about $44 million.

The successful landing of Firefly’s Blue Ghost earlier this month buoyed NASA’s expectations for CLPS. “Overall, it’s been a fabulous, wonderful proof positive that the CLPS model does work,” said Brad Bailey, assistant deputy associate administrator for exploration in NASA’s Science Mission Directorate.

NASA has seven more CLPS missions on contract. The next could launch as soon as August when Blue Origin plans to send its first Blue Moon lander to the Moon. NASA has booked two more Blue Ghost missions with Firefly and two more landing attempts with Intuitive Machines, plus one more flight by Astrobotic and one lander from Draper Laboratory.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s the secret to how Firefly was able to nail its first lunar landing Read More »

to-avoid-the-panama-canal,-relativity-space-may-move-some-operations-to-texas

To avoid the Panama Canal, Relativity Space may move some operations to Texas

Although Baytown does not have any historical affinity with aerospace, its location on the water offers far more straightforward access to Relativity’s test facilities in Mississippi and its launch site in Florida. There are other benefits. The cost of living in the region is far lower than Southern California, and due to the location of Johnson Space Center just 20 miles away, there is a reservoir of space talent in the region.

A spokesperson for Relativity Space did not confirm the move.

“As we scale Terran R production to meet growing customer demand, we are exploring options to expand our manufacturing capabilities,” the spokesperson said. “Our focus is on ensuring we have the right footprint to achieve the production cadence required to serve our customers.”

Texas space is on the rise

For logistics and other reasons, Relativity has been evaluating locations across several states that border the Gulf of Mexico, including Texas, over recent years, multiple sources said. The company is expected to continue operating its large “Wormhole” factory in Long Beach, California, which is more than 1 million square feet in size. A second factory in Texas would likely be used to build propellant tanks and assemble stages for testing in Mississippi and launch in Florida.

The addition of a second factory in Texas would underscore the investment to which Schmidt appears committed to making Relativity a major player in US launch.

It is unclear whether state or local officials have provided any incentives to Relativity for relocating a significant chunk of its manufacturing operations to Texas. Last year the state legislature created the Texas Space Commission and provided $350 million in funding to support commercial space operations. In February the commission awarded the first of these grants, valued at $47.7 million, to five companies with Texas-based operations: Starlab Space, Intuitive Machines, Firefly Aerospace, SpaceX, and Blue Origin.

A leading figure behind the commission is State Rep. Greg Bonnen, whose district includes Johnson Space Center. Bonnen has signaled that the commission is a long-term project by the state to ensure its economic prosperity in the 21st century by continuing to grow existing businesses in Texas, but also to attract new companies to the state.

SpaceX and Firefly already manufacture rockets in Texas. Adding Relativity Space would be a significant coup for a state that, only a decade ago, was known primarily in space for being the home of NASA’s human spaceflight activities.

To avoid the Panama Canal, Relativity Space may move some operations to Texas Read More »

crew-10-launches,-finally-clearing-the-way-for-butch-and-suni-to-fly-home

Crew-10 launches, finally clearing the way for Butch and Suni to fly home

A Falcon 9 rocket launched four astronauts safely into orbit on Friday evening, marking the official beginning of the Crew-10 mission to the International Space Station.

Although any crew launch into orbit is notable, this mission comes with an added bit of importance as its success clears the way for two NASA astronauts, Butch Wilmore and Suni Williams, to finally return home from space after a saga spanning nine months.

Friday’s launch came two days after an initial attempt was scrubbed on Wednesday evening. This was due to a hydraulic issue with the ground systems that handle the Falcon 9 rocket at Launch Complex 39A in Florida.

There were no technical issues on Friday, and with clear skies NASA astronauts Anne McClain and Nichole Ayers, Japanese astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov rocketed smoothly into orbit.

If all goes well, the Crew Dragon spacecraft carrying the four astronauts will dock with the space station at 11: 30 pm ET on Saturday. They will spend about six months there.

A long, strange trip

Following their arrival at the space station, the members of Crew-10 will participate in a handover ceremony with the four astronauts of Crew-9, which includes Wilmore and Williams. This will clear the members of Crew 9 for departure from the station as early as next Wednesday, March 19, pending good weather in the waters surrounding Florida for splashdown of Dragon.

Crew-10 launches, finally clearing the way for Butch and Suni to fly home Read More »

rocket-report:-ula-confirms-cause-of-booster-anomaly;-crew-10-launch-on-tap

Rocket Report: ULA confirms cause of booster anomaly; Crew-10 launch on tap


The head of Poland’s space agency was fired over a bungled response to SpaceX debris falling over Polish territory.

A SpaceX Falcon 9 rocket with the company’s Dragon spacecraft on top is seen during sunset Tuesday at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: SpaceX

Welcome to Edition 7.35 of the Rocket Report! SpaceX’s steamroller is still rolling, but for the first time in many years, it doesn’t seem like it’s rolling downhill. After a three-year run of perfect performance—with no launch failures or any other serious malfunctions—SpaceX’s Falcon 9 rocket has suffered a handful of issues in recent months. Meanwhile, SpaceX’s next-generation Starship rocket is having problems, too. Kiko Dontchev, SpaceX’s vice president of launch, addressed some (but not all) of these concerns in a post on X this week. Despite the issues with the Falcon 9, SpaceX has maintained a remarkable launch cadence. As of Thursday, SpaceX has launched 28 Falcon 9 flights since January 1, ahead of last year’s pace.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Alpha rocket preps for weekend launch. While Firefly Aerospace is making headlines for landing on the Moon, its Alpha rocket is set to launch again as soon as Saturday morning from Vandenberg Space Force Base, California. The two-stage, kerosene-fueled rocket will launch a self-funded technology demonstration satellite for Lockheed Martin. It’s the first of up to 25 launches Lockheed Martin has booked with Firefly over the next five years. This launch will be the sixth flight of an Alpha rocket, which has become a leader in the US commercial launch industry for dedicated missions with 1 ton-class satellites.

Firefly’s OG … The Alpha rocket was Firefly’s first product, and it has been a central piece of the company’s development since 2014. Like Firefly itself, the Alpha rocket program has gone through multiple iterations, including a wholesale redesign nearly a decade ago. Sure, Firefly can’t claim any revolutionary firsts with the Alpha rocket, as it can with its Blue Ghost lunar lander. But without Alpha, Firefly wouldn’t be where it is today. The Texas-based firm is one of only four US companies with an operational orbital-class rocket. One thing to watch for is how quickly Firefly can ramp up its Alpha launch cadence. The rocket only flew once last year.

Isar Aerospace celebrates another win. In last week’s Rocket Report, we mentioned that the German launch startup Isar Aerospace won a contract with a Japanese company to launch a 200-kilogram commercial satellite in 2026. But wait, there’s more! On Wednesday, the Norwegian Space Agency announced it awarded a contract to Isar Aerospace for the launch of a pair of satellites for the country’s Arctic Ocean Surveillance initiative, European Spaceflight reports. The satellites are scheduled to launch on Isar’s Spectrum rocket from Andøya Spaceport in Norway by 2028.

First launch pending … These recent contract wins are a promising sign for Isar Aerospace, which is also vying for contracts to launch small payloads for the European Space Agency. The Spectrum rocket could launch on its inaugural flight within a matter of weeks, and if successful, it could mark a transformative moment for the European space industry, which has long been limited to a single launch provider: the French company Arianespace. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Mother Nature holds up Oz launch. The first launch by Gilmour Space has been postponed again due to a tropical cyclone that brought severe weather to Australia’s Gold Coast region earlier this month, InnovationAus.com reports. Tropical Cyclone Alfred didn’t significantly impact Gilmour’s launch site, but the storm did cause the company to suspend work at its corporate headquarters in Southeast Queensland. With the storm now over, Gilmour is reassessing when it might be ready to launch its Eris rocket. Reportedly, the delay could be as long as two weeks or more.

A regulatory storm … Gilmour aims to become the first Australian company to launch a rocket into orbit. Last month, Gilmour announced the launch date for the Eris rocket was set for no earlier than March 15, but Tropical Cyclone Alfred threw this schedule out the window. Gilmour said it received a launch license from the Australian Space Agency in November and last month secured approvals to clear airspace around the launch site. But there’s still a hitch. The license is conditional on final documentation for the launch being filed and agreed with the space agency, and this process is stretching longer than anticipated. (submitted by ZygP)

What is going on at SpaceX? As we mention in the introduction to this week’s Rocket Report, it has been an uncharacteristically messy eight months for SpaceX. These speed bumps include issues with the Falcon 9 rocket’s upper stage on three missions, two lost Falcon 9 boosters, and consecutive failures of SpaceX’s massive Starship rocket on its first two test flights of the year. So what’s behind SpaceX’s bumpy ride? Ars wrote about the pressures facing SpaceX employees as Elon Musk pushes his workforce ever-harder to accelerate toward what Musk might call a multi-planetary future.

Headwinds or tailwinds? … No country or private company ever launched as many times as SpaceX flew its fleet of Falcon 9 rockets in 2024. At the same time, the company has been attempting to move its talented engineering team off the Falcon 9 and Dragon programs and onto Starship to keep that ambitious program moving forward. This is all happening as Musk has taken on significant roles in the Trump administration, stirring controversy and raising questions about his motives and potential conflicts of interest. However, it may be not so much Musk’s absence from SpaceX that is causing these issues but more the company’s relentless culture. As my colleague Eric Berger suggested in his piece, it seems possible that, at least for now, SpaceX has reached the speed limit for commercial spaceflight.

A titan of Silicon Valley enters the rocket business. Former Google chief executive Eric Schmidt has taken a controlling interest in the Long Beach, California-based Relativity Space, Ars reports. Schmidt’s involvement with Relativity has been quietly discussed among space industry insiders for a few months. Multiple sources told Ars that he has largely been bankrolling the company since the end of October, when the company’s previous fundraising dried up. Now, Schmidt is Relativity’s CEO.

Unclear motives … It is not immediately clear why Schmidt is taking a hands-on approach at Relativity. However, it is one of the few US-based companies with a credible path toward developing a medium-lift rocket that could potentially challenge the dominance of SpaceX and its Falcon 9 rocket. If the Terran R booster becomes commercially successful, it could play a big role in launching megaconstellations. Schmidt’s ascension also means that Tim Ellis, the company’s co-founder, chief executive, and almost sole public persona for nearly a decade, is now out of a leadership position.

Falcon 9 deploys NASA’s newest space telescope. Satellites come in all shapes and sizes, but there aren’t any that look quite like SPHEREx, an infrared observatory NASA launched Tuesday night in search of answers to simmering questions about how the Universe, and ultimately life, came to be, Ars reports. The SPHEREx satellite rocketed into orbit from California aboard a SpaceX Falcon 9 rocket, beginning a two-year mission surveying the sky in search of clues about the earliest periods of cosmic history, when the Universe rapidly expanded and the first galaxies formed. SPHEREx will also scan for pockets of water ice within our own galaxy, where clouds of gas and dust coalesce to form stars and planets.

Excess capacity … SPHEREx has lofty goals, but it’s modest in size, weighing just a little more than a half-ton at launch. This meant the Falcon 9 rocket had plenty of extra room for four other small satellites that will fly in formation to image the solar wind as it travels from the Sun into the Solar System. The four satellites are part of NASA’s PUNCH mission. SPHEREx and PUNCH are part of NASA’s Explorers program, a series of cost-capped science missions with a lineage going back to the dawn of the Space Age. SPHEREx and PUNCH have a combined cost of about $638 million. (submitted by EllPeaTea)

China has launched another batch of Internet satellites. A new group of 18 satellites entered orbit Tuesday for the Thousand Sails constellation with the first launch from a new commercial launch pad, Space News reports. The satellites launched on top of a Long March 8 rocket from Hainan Commercial Launch Site near Wenchang on Hainan Island. The commercial launch site has two pads, the first of which entered service with a launch last year. This mission was the first to launch from the other pad at the commercial spaceport, which is gearing up for an uptick in Chinese launch activity to continue deploying satellites for the Thousand Sails network and other megaconstellations.

Sailing on … The Thousand Sails constellation, also known as Qianfan, or G60 Starlink, is a broadband satellite constellation spearheaded by Shanghai Spacecom Satellite Technology (SSST), also known as Spacesail, Space News reported. The project, which aims to deploy 14,000 satellites, seeks to compete in the global satellite Internet market. Spacesail has now launched 90 satellites into near-polar orbits, and the operator previously stated it aims to have 648 satellites in orbit by the end of 2025. If Spacesail continues launching 18 satellites per rocket, this goal would require 31 more launches this year. (submitted by EllPeaTea)

NASA, SpaceX call off astronaut launch. With the countdown within 45 minutes of launch, NASA called off an attempt to send the next crew to the International Space Station Wednesday evening to allow more time to troubleshoot a ground system hydraulics issue, CBS News reports. During the countdown Wednesday, SpaceX engineers were troubleshooting a problem with one of two clamp arms that hold the Falcon 9 rocket to its strongback support gantry. Hydraulics are used to retract the two clamps prior to launch.

Back on track … NASA confirmed Thursday SpaceX ground teams completed inspections of the hydraulics system used for the clamp arm supporting the Falcon 9 rocket and successfully flushed a suspected pocket of trapped air in the system, clearing the way for another launch attempt Friday evening. This mission, known as Crew-10, will ferry two NASA astronauts, a Japanese mission specialist, and a Russian cosmonaut to the space station. They will replace a four-person crew currently at the ISS, including Butch Wilmore and Suni Williams, who have been in orbit since last June after flying to space on Boeing’s Starliner capsule. Starliner returned to Earth without its crew due to a problem with overheating thrusters, leaving Wilmore and Williams behind to wait for a ride home with SpaceX.

SpaceX’s woes reach Poland’s space agency. The president of the Polish Space Agency, Grzegorz Wrochna, has been dismissed following a botched response to the uncontrolled reentry of a Falcon 9 second stage that scattered debris across multiple locations in Poland, European Spaceflight reports. The Falcon 9’s upper stage was supposed to steer itself toward a controlled reentry last month after deploying a set of Starlink satellites, but a propellant leak prevented it from doing so. Instead, the stage remained in orbit for nearly three weeks before falling back into the atmosphere February 19, scattering debris fragments at several locations in Poland.

A failure to communicate … In the aftermath of the Falcon 9’s uncontrolled reentry, the Polish Space Agency (POLSA) claimed it sent warnings of the threat of falling space debris to multiple departments of the Polish government. One Polish ministry disputed this claim, saying it was not adequately warned about the uncontrolled reentry. POLSA later confirmed it sent information regarding the reentry to a wrong email address. Making matters worse, the Polish Space Agency reported it was hacked on March 2. The Polish government apparently had enough and fired the head of the space agency March 11.

Vulcan booster anomaly blamed on “manufacturing defect.” The loss of a solid rocket motor nozzle on the second flight of United Launch Alliance’s Vulcan Centaur last October was caused by a manufacturing defect, Space News reports. In a roundtable with reporters Wednesday, ULA chief executive Tory Bruno said the problem has been corrected as the company awaits certification of the Vulcan rocket by the Space Force. The nozzle fell off the bottom of one of the Vulcan launcher’s twin solid rocket boosters about a half-minute into its second test flight last year. The rocket continued its climb into space, but ULA and Northrop Grumman, which supplies solid rocket motors for Vulcan, set up an investigation to find the cause of the nozzle malfunction.

All the trimmings … Bruno said the anomaly was traced to a “manufacturing defect” in one of the internal parts of the nozzle, an insulator. Specific details, he said, remained proprietary, according to Space News. “We have isolated the root cause and made appropriate corrective actions,” he said, which were confirmed in a static-fire test of a motor at a Northrop test site in Utah in February. “So we are back continuing to fabricate hardware and, at least initially, screening for what that root cause was.” Bruno said the investigation was aided by recovery of hardware that fell off the motor while in flight and landed near the launch pad in Florida, as well as “trimmings” of material left over from the manufacturing process. ULA also recovered both boosters from the ocean so engineers could compare the one that lost its nozzle to the one that performed normally. The defective hardware “just stood out night and day,” Bruno said. “It was pretty clear that that was an outlier, far out of family.” Meanwhile, ULA has trimmed its launch forecast for this year, from a projection of up to 20 launches down to a dozen. (submitted by EllPeaTea)

Next three launches

March 14: Falcon 9 | Crew-10 | Kennedy Space Center, Florida | 23: 03 UTC

March 15: Electron | QPS-SAR-9 | Mahia Peninsula, New Zealand | 00: 00 UTC

March 15: Long March 2B | Unknown Payload | Jiuquan Satellite Launch Center, China | 04: 10 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: ULA confirms cause of booster anomaly; Crew-10 launch on tap Read More »

athena-landed-in-a-dark-crater-where-the-temperature-was-minus-280°-f

Athena landed in a dark crater where the temperature was minus 280° F

The Athena spacecraft was not exactly flying blind as it approached the lunar surface one week ago. The software on board did a credible job of recognizing nearby craters, even with elongated shadows over the terrain. However, the lander’s altimeter had failed.

So while Athena knew where it was relative to the surface of the Moon, the lander did not know how far it was above the surface.

An important detail, that. As a result, the privately built spacecraft struck the lunar surface on a plateau, toppled over, and began to skid across the surface. As it did so, the lander rotated at least once or twice before coming to a stop in a small, shadowed crater.

“The landing was kind of like sliding into second base,” Steve Altemus, chief executive officer of Intuitive Machines, which built the lander, said in an interview Thursday.

Cold and lonely

It has been a busy and tiring week for the chief of a company that seeks to help lead the development of a lunar economy. Expectations were high for this, the company’s second lunar landing attempt after its Odysseus vehicle became the first private spacecraft to ever make a soft landing on the Moon, last year, before toppling over.

In some ways, this mission was even more disappointing. Because Athena skidded across the lunar surface, it dredged up regolith. When it came to a stop, some of this material was blown up into the solar panels—already in a sub-optimal location on its side. The spacecraft’s power reserves, therefore, were limited. Almost immediately, the team at Intuitive Machines knew their spacecraft was dying.

“We knew we had slid into a slightly shadowed crater, and the temperature was very cold,” Altemus said. “The solar arrays had regolith on them, and they weren’t charging, the ones pointing up, enough to give us sufficient power to power the heaters to keep it warm enough to survive.”

Athena landed in a dark crater where the temperature was minus 280° F Read More »

what-happens-when-dei-becomes-doa-in-the-aerospace-industry?

What happens when DEI becomes DOA in the aerospace industry?

As part of the executive order, US companies with federal contracts and grants must certify that they no longer have any DEI hiring practices. Preferentially hiring some interns from a pool that includes women or minorities is such a practice. Effectively, then, any private aerospace company that receives federal funding, or intends to one day, would likely be barred under the executive order from engaging with these kinds of fellowships in the future.

US companies are scrambling to determine how best to comply with the executive order in many ways, said Emily Calandrelli, an engineer and prominent science communicator. After the order went into effect, some large defense contractor companies, including Lockheed Martin and RTX (formerly Raytheon) went so far as to cancel internal employee resource groups, including everything from group chats to meetings among women at the company that served to foster a sense of community. When Calandrelli asked Lockheed about this decision, the company confirmed it had “paused” these resource group activities to “align with the new executive order.”

An unwelcoming environment

For women and minorities, Calandrelli said, this creates an unwelcoming environment.

“You want to go where you are celebrated and wanted, not where you are tolerated,” she said. “That sense of belonging is going to take a hit. It’s going to be harder to recruit women and keep women.”

This is not just a problem for women and minorities, but for everyone, Calandrelli said. The aerospace industry is competing with others for top engineering talent. Prospective engineers who feel unwanted in aerospace, as well as women and minorities working for space companies today, may find the salary and environment more welcoming at Apple or Google or elsewhere in the tech industry. That’s a problem for the US Space Force and other areas of the government seeking to ensure the US space industry retains its lead in satellite technology, launch, communications and other aspects of space that touch every part of life on Earth.

What happens when DEI becomes DOA in the aerospace industry? Read More »

what-is-space-war-fighting?-the-space-force’s-top-general-has-some-thoughts.

What is space war-fighting? The Space Force’s top general has some thoughts.


Controlling space means “employing kinetic and non-kinetic means to affect adversary capabilities.”

Members of the Space Force render a salute during a change of command ceremony July 2, 2024, as Col. Ramsey Horn took the helm of Space Delta 9, the unit that oversees orbital warfare operations at Schriever Space Force Base, Colorado. Credit: US Space Force / Dalton Prejeant

DENVER—The US Space Force lacks the full range of space weapons China and Russia are adding to their arsenals, and military leaders say it’s time to close the gap.

Gen. Chance Saltzman, the Space Force’s chief of space operations, told reporters at the Air & Space Forces Association Warfare Symposium last week that he wants to have more options to present to national leaders if an adversary threatens the US fleet of national security satellites used for surveillance, communication, navigation, missile warning, and perhaps soon, missile defense.

In prepared remarks, Saltzman outlined in new detail why the Space Force should be able to go on the offense in an era of orbital warfare. Later, in a roundtable meeting with reporters, he briefly touched on the how.

The Space Force’s top general has discussed the concept of “space superiority” before. This is analogous to air superiority—think of how US and allied air forces dominated the skies in wartime over the last 30 years in places like Iraq, the Balkans, and Afghanistan.

In order to achieve space superiority, US forces must first control the space domain by “employing kinetic and non-kinetic means to affect adversary capabilities through disruption, degradation, and even destruction, if necessary,” Saltzman said.

Kinetic? Imagine a missile or some other projectile smashing into an enemy satellite. Non-kinetic? This category involves jamming, cyberattacks, and directed-energy weapons, like lasers or microwave signals, that could disable spacecraft in orbit.

“It includes things like orbital warfare and electromagnetic warfare,” Saltzman said. These capabilities could be used offensively or defensively. In December, Ars reported on the military’s growing willingness to talk publicly about offensive space weapons, something US officials long considered taboo for fear of sparking a cosmic arms race.

Officials took this a step further at last week’s warfare symposium in Colorado. Saltzman said China and Russia, which military leaders consider America’s foremost strategic competitors, are moving ahead of the United States with technologies and techniques to attack satellites in orbit.

This new ocean

For the first time in more than a century, warfare is entering a new physical realm. By one popular measure, the era of air warfare began in 1911, when an Italian pilot threw bombs out of his airplane over Libya during the Italo-Turkish War. Some historians might trace airborne warfare to earlier conflicts, when reconnaissance balloons offered eagle-eyed views of battlefields and troop movements. Land and sea combat began in ancient times.

“None of us were alive when the other domains started being contested,” Saltzman said. “It was just natural. It was just a part of the way things work.”

Five years since it became a new military service, the Space Force is in an early stage of defining what orbital warfare actually means. First, military leaders had to stop considering space as a benign environment, where threats from the harsh environment of space reign supreme.

Artist’s illustration of a satellite’s destruction in space. Credit: Aerospace Corporation

“That shift from benign environment to a war-fighting domain, that was pretty abrupt,” Saltzman said. “We had to mature language. We had to understand what was the right way to talk about that progression. So as a Space Force dedicated to it, we’ve been progressing our vocabulary. We’ve been saying, ‘This is what we want to focus on.'”

“We realized, you know what, defending is one thing, but look at this architecture (from China). They’re going to hold our forces at risk. Who’s responsible for that? And clearly the answer is the Space Force,” Saltzman said. “We say, ‘OK, we’ve got to start to solve for that problem.'”

“Well, how do militaries talk about that? We talk about conducting operations, and that includes offense and defense,” he continued. “So it’s more of a maturation of the role and the responsibilities that a new service has, just developing the vocabulary, developing the doctrine, operational concepts, and now the equipment and the training. It’s just part of the process.”

Of course, this will all cost money. Congress approved a $29 billion budget for the Space Force in 2024, about $4 billion more than NASA received but just 3.5 percent of the Pentagon’s overall budget. Frank Kendall, secretary of the Air Force under President Biden, said last year that the Space Force’s budget is “going to need to double or triple over time” to fund everything the military needs to do in space.

The six types of space weapons

Saltzman said the Space Force categorizes adversarial space weapons in six categories—three that are space-based and three that are ground-based.

“You have directed-energy, like lasers, you have RF (radio frequency) jamming capabilities, and you have kinetic, something that you’re trying to destroy physically,” Saltzman said. These three types of weapons could be positioned on the ground or in space, getting to Saltzman’s list of six categories.

“We’re seeing in our adversary developmental capabilities, they’re pursuing all of those,” Saltzman said. “We’re not pursuing all of those yet.”

But Saltzman argued that maybe the United States should. “There are good reasons to have all those categories,” he said. Targeting an enemy satellite in low-Earth orbit, just a few hundred miles above the planet, requires a different set of weapons than a satellite parked more than 22,000 miles up—roughly 36,000 kilometers—in geosynchronous orbit.

China is at the pinnacle of the US military’s threat pyramid, followed by Russia and less sophisticated regional powers like North Korea and Iran.

“Really, what’s most concerning… is the mix of weapons,” Saltzman said. “They are pursuing the broadest mix of weapons, which means they’re going to hold a vast array of targets at risk if we can’t defeat them. So our focus out of the gate has been on resiliency of our architectures. Make the targeting as hard on the adversary as possible.”

Gen. Chance Saltzman, the chief of Space Operations, speaks at the Air & Space Forces Association’s Warfare Symposium on March 3, 2025. Credit: Jud McCrehin / Air & Space Forces Association

About a decade ago, the military recognized an imperative to transition to a new generation of satellites. Where they could, Pentagon officials replaced or complemented their fleets of a few large multibillion-dollar satellites with constellations of many more cheaper, relatively expendable satellites. If an adversary took out just one of the military’s legacy satellites, commanders would feel the pain. But the destruction of multiple smaller satellites in the newer constellations wouldn’t have any meaningful effect.

That’s one of the reasons the military’s Space Development Agency has started launching a network of small missile-tracking satellites in low-Earth orbit, and it’s why the Pentagon is so interested in using services offered by SpaceX’s Starlink broadband constellation. The Space Force is looking at ways to revamp its architecture for space-based navigation by potentially augmenting or replacing existing GPS satellites with an array of positioning platforms in different orbits.

“If you can disaggregate your missions from a few satellites to many satellites, you change the targeting calculus,” Saltzman said. “If you can make things maneuverable, then it’s harder to target, so that is the initial effort that we invested heavily on in the last few years to make us more resilient.”

Now, Saltzman said, the Space Force must go beyond reshaping how it designs its satellites and constellations to respond to potential threats. These new options include more potent offensive and defensive weapons. He declined to offer specifics, but some options are better than others.

The cost of destruction

“Generally in a military setting, you don’t say, ‘Hey, here’s all the weapons, and here’s how I’m going to use them, so get ready,'” Saltzman said. “That’s not to our advantage… but I will generally [say] that I am far more enamored by systems that deny, disrupt, [and] degrade. There’s a lot of room to leverage systems focused on those ‘D words.’ The destroy word comes at a cost in terms of debris.”

A high-speed impact between an interceptor weapon and an enemy satellite would spread thousands of pieces of shrapnel across busy orbital traffic lanes, putting US and allied spacecraft at risk.

“We may get pushed into a corner where we need to execute some of those options, but I’m really focused on weapons that deny, disrupt, degrade,” Saltzman said.

This tenet of environmental stewardship isn’t usually part of the decision-making process for commanders in other military branches, like the Air Force or the Navy. “I tell my air-breathing friends all the time: When you shoot an airplane down, it falls out of your domain,” Saltzman said.

China now operates more than 1,000 satellites, and more than a third of these are dedicated to intelligence, surveillance, and reconnaissance missions. China’s satellites can collect high-resolution spy imagery and relay the data to terrestrial forces for military targeting. The Chinese “space-enabled targeting architecture” is “pretty impressive,” Saltzman said.

This slide from a presentation by Space Systems Command illustrates a few of the counter-space weapons fielded by China and Russia. Credit: Space Systems Command

“We have a responsibility not only to defend the assets in space but to protect the war-fighter from space-enabled attack,” said Lt. Gen. Doug Schiess, a senior official at US Space Command. “What China has done with an increasing launch pace is put up intelligence, surveillance, and reconnaissance satellites that can then target our naval forces, our land forces, and our air forces at much greater distance. They’ve essentially built a huge kill chain, or kill web, if you will, to be able to target our forces much earlier.”

China’s aerospace forces have either deployed or are developing direct-ascent anti-satellite missiles, co-orbital satellites, electronic warfare platforms like mobile jammers, and directed-energy, or laser, systems, according to a Pentagon report on China’s military and security advancements. These weapons can reach targets from low-Earth orbit all the way up to geosynchronous orbit.

In his role as a member of the Joint Chiefs of Staff, Saltzman advises the White House on military matters. Like most military commanders, he said he wants to offer his superiors as many options as possible. “The more weapons mix we have, the more options we can offer the president,” Saltzman said.

The US military has already demonstrated it can shoot down a satellite with a ground-based interceptor, and the Space Force is poised to field new ground-based satellite jammers in the coming months. The former head of the Space Force, Gen. Jay Raymond, told lawmakers in 2021 that the military was developing directed-energy weapons to assure dominance in space, although he declined to discuss details in an unclassified hearing.

So the Pentagon is working on at least three of the six space weapons categories identified by Saltzman. China and Russia appear to have the edge in space-based weapons, at least for now.

In the last several years, Russia has tested a satellite that can fire a projectile capable of destroying another spacecraft in orbit, an example of a space-based kinetic weapon. Last year, news leaked that US intelligence officials are concerned about Russian plans to put a nuclear weapon in orbit. China launched a satellite named Shijian-17 in 2016 with a robotic arm that could be used to grapple and capture other satellites in space. Then, in 2021, China launched Shijian-21, which docked with a defunct Chinese satellite to take over its maneuvering and move it to a different orbit.

There’s no evidence that the US Space Force has demonstrated kinetic space-based anti-satellite weapons, and Pentagon officials have roundly criticized the possibility of Russia placing a nuclear weapon in space. But the US military might soon develop space-based interceptors as part of the Trump administration’s “Golden Dome” missile defense shield. These interceptors might also be useful in countering enemy satellites during conflict.

The Sodium Guidestar at the Air Force Research Laboratory’s Starfire Optical Range in New Mexico. Researchers with AFRL’s Directed Energy Directorate use the Guidestar laser for real-time, high-fidelity tracking and imaging of satellites too faint for conventional adaptive optical imaging systems. Credit: US Air Force

The Air Force used a robotic arm on a 2007 technology demonstration mission to snag free-flying satellites out of orbit, but this was part of a controlled experiment with a spacecraft designed for robotic capture. Several companies, such as Maxar and Northrop Grumman, are developing robotic arms that could grapple “non-cooperative” satellites in orbit.

While the destruction of an enemy satellite is likely to be the Space Force’s last option in a war, military commanders would like to be able to choose to do so. Schiess said the military “continues to have gaps” in this area.

“With destroy, we need that capability, just like any other domain needs that capability, but we have to make sure that we do that with responsibility because the space domain is so important,” Schiess said.

Matching the rhetoric of today

The Space Force’s fresh candor about orbital warfare should be self-evident, according to Saltzman. “Why would you have a military space service if not to execute space control?”

This new comfort speaking about space weapons comes as the Trump administration strikes a more bellicose tone in foreign policy and national security. Pete Hegseth, Trump’s secretary of defense, has pledged to reinforce a “warrior ethos” in the US armed services.

Space Force officials are doing their best to match Hegseth’s rhetoric.

“Every guardian is a war-fighter, regardless of your functional specialty, and every guardian contributes to Space Force readiness,” Saltzman said. Guardian is the military’s term for a member of the Space Force, comparable to airmen, sailors, soldiers, and marines. “Whether you built the gun, pointed the gun, or pulled the trigger, you are a part of combat capability.”

Echoing Hegseth, the senior enlisted member of the Space Force, Chief Master Sgt. John Bentivegna, said he’s focused on developing a “war-fighter ethos” within the service. This involves training on scenarios of orbital warfare, even before the Space Force fields any next-generation weapons systems.

“As Gen. Saltzman is advocating for the money and the resources to get the kit, the culture, the space-minded war-fighter, that work has been going on and continues today,” Bentivegna said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

What is space war-fighting? The Space Force’s top general has some thoughts. Read More »

no,-that’s-not-a-cosmic-cone-of-shame—it’s-nasa’s-newest-space-telescope

No, that’s not a cosmic cone of shame—it’s NASA’s newest space telescope


A filter for the Universe

“SPHEREx is going to produce an enormous three-dimensional map of the entire night sky.”

NASA’s SPHEREx observatory after completion of environmental testing at BAE Systems in Boulder, Colorado, last year. Credit: NASA/JPL-Caltech/BAE Systems

Satellites come in all shapes and sizes, but there aren’t any that look quite like SPHEREx, an infrared observatory NASA launched Tuesday night in search of answers to simmering questions about how the Universe, and ultimately life, came to be.

The mission launched aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California at 8: 10 pm local time (11: 10 pm EDT) Tuesday. Less than 45 minutes later, the Falcon 9’s upper stage released SPHEREx into a polar orbit at an altitude of roughly 420 miles (675 kilometers). Ground controllers received the first signals from the spacecraft, confirming its health after reaching space.

As soon as next month, once engineers verify the observatory is ready, SPHEREx will begin a two-year science mission surveying the sky in 102 colors invisible to the human eye. The observatory’s infrared detectors will collect data on the chemical composition of asteroids, hazy star-forming clouds, and faraway galaxies.

A Falcon 9 rocket lifted SPHEREx into orbit. Credit: NASA/Jim Ross

“SPHEREx is going to produce an enormous three-dimensional map of the entire night sky, and with this immense and novel dataset, we’re going to address some of the most fundamental questions in astrophysics,” said Phil Korngut, the mission’s instrument scientist at Caltech.

“Using a technique called linear variable filter spectroscopy, we’re going to produce 102 maps in 102 wavelengths every six months, and our baseline mission is to do this four times over the course of two years,” Korngut said.

Boiling it down

The mission’s full name, for which SPHEREx is the acronym, is a mouthful—it stands for the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer. The $488 million mission seeks answers to three basic questions: How did the Universe begin? How did galaxies begin? What are the conditions for life outside the Solar System?

While it’s possible to sum up these objectives in an elevator pitch, the details touch on esoteric topics like cosmic inflation, quantum physics, and the flatness of spacetime. Philosophically, these questions are existential. SPHEREx will try to punch above its weight.

Built by BAE Systems, SPHEREx is about the size of a subcompact car, and it lacks the power and resolution of a flagship observatory like the James Webb Space Telescope. Webb’s primary mirror spans more than 21 feet (6.5 meters) across, while SPHEREx’s primary mirror has an effective diameter of just 7.9 inches (20 centimeters), comparable to a consumer-grade backyard telescope.

SPHEREx will test the inflationary model, a theory to explain the unimaginably violent moments after the Big Bang. Credit: NASA

But NASA’s newest space telescope has a few advantages. While Webb is designed to peer deep into small slivers of the sky, SPHEREx’s wider field of view will observe the sky in all directions. Like its name might suggest, SPHEREx will capture a spherical view of the cosmos. Color filters overlay the instrument’s detector array to separate light entering the telescope into its component wavelengths, a process known as spectroscopy. NASA says SPHEREx’s unique design allows it to conduct infrared spectroscopy on hundreds of thousands of objects simultaneously, and more than 600 exposures per day.

“SPHEREx is a testament to doing big science with a small telescope,” said Beth Fabinsky, the mission’s project manager at NASA’s Jet Propulsion Laboratory in California.

Because SPHEREx orbits hundreds of miles above the Earth, the telescope flies above the discernible atmosphere, which can absorb faint thermal energy coming from distant astronomical sources. Its detectors must be cold, below minus 360° Fahrenheit, or 55 Kelvin, or the telescope would be blinded by its own light. This is the reason the spacecraft has such an unusual look.

Many past infrared telescopes used cryogenic coolant to chill their detectors, but this is a finite resource that gradually boils off in space, limiting mission lifetimes. Webb uses a complicated tennis court-sized sunshield to block heat and light from the Sun from its infrared instruments. Engineers came up with a simpler solution for SPHEREx.

Three concentric photon shields extend from the top of the spacecraft to insulate the telescope’s optics and detectors from light from the Sun and the Earth. This design requires no moving parts, boosting the mission’s reliability and longevity. The photon shields look like an Elizabethan collar. Pet owners may know it as the “cone of shame” given to animals after surgeries.

Like NASA’s new half-billion-dollar space telescope, this cheery canine wears his collar with pride. Credit: Michael Macor/San Francisco Chronicle via Getty Images

For SPHEREx, this cone is an enabler, allowing astronomers to map hundreds of millions of galaxies to study inflation, a cosmological theory that suggests the Universe underwent a mind-boggling expansion just after the Big Bang nearly 13.8 billion years ago. Through the process of inflation, the Universe grew a “trillion-trillion-fold” in a fraction of a second, Korngut said.

The theory suggests inflation left behind the blueprint for the largest-scale structures of the Universe, called the cosmic web. Inflation “expanded tiny fluctuations, smaller than an atom, to enormous cosmological scales that we see today, traced out by galaxies and clusters of galaxies,” said Jamie Bock, a cosmologist at Caltech who leads the SPHEREx science team.

“Even though inflation (theory) was invented in the 1980s, it’s been tested over the intervening decades and has been consistent with the data,” Bock said. “While we have this general picture, we still don’t know what drove inflation, why it happened. So what SPHEREx will do is test certain models of inflation by tracing out the three dimensions, hundreds of millions of galaxies, over the entire sky. And those galaxies trace out the initial fluctuations set up by inflation.”

SPHEREx’s telescope will also collect the combined light emitted by all galaxies, all the way back to the cosmic dawn, when the first stars and galaxies shined through the foggy aftermath of the Big Bang. Scientists believe star formation peaked in the Universe some 10 billion years ago, but their understanding of cosmic history is based on observations of a relatively small population of galaxies.

“SPHEREx, with its small telescope, is going to address this subject in a novel way,” Bock said. “Instead of really counting, very deeply, individual galaxies, SPHEREx is going to look at the total glow produced by all galaxies. This cosmological glow captures all light emitted over cosmic history from galaxies, as well as anything else that emits light. So it’s a very different way of looking at the Universe, and in particular, that first stage of star and galaxy formation must also be in this cosmic glow.”

Bock and his science team will match the aggregate data from SPHEREx with what they know about the Universe’s early galaxies from missions like Webb and the Hubble Space Telescope. “We can compare to counts that have been built up with large telescopes and see if we’ve missed any sources of light,” Bock said.

Closer to home

In our own galaxy, SPHEREx will use its infrared sensitivity to investigate the origins and abundance of water and ice in molecular clouds, the precursors to alien solar systems where gas and dust collapse to form stars and planets.

“We think that most of the water and ice in the universe is in places like this,” said Rachel Akeson, SPHEREx science data center lead at Caltech. “It’s also likely that the water in Earth’s oceans originated in the molecular cloud. So how will SPHEREx map the ice in our galaxy? While other space telescopes have found reservoirs of water in hundreds of locations, SPHEREx observations of our galaxy will give us more than 9 million targets, a much bigger sample than we have now.”

As the telescope scans across these millions of targets, its detectors will measure of each point in the sky in 102 infrared wavelengths. With the help of spectroscopy, SPHEREx will measure how much water is bound up in these star-forming clouds.

“Knowing the water content around the galaxy is a clue to how many locations could potentially host life,” Akeson said.

The SPHEREx observatory (top) was joined on its ride to space by four small NASA satellites (bottom) setting out to study the solar wind. Credit: Benjamin Fry/BAE Systems

All-sky surveys like SPHEREx’s often turn up surprises because they ingest immense amounts of data. They leave behind enduring legacies by building up catalogs of galaxies and stars. Astronomers use these archives to plan follow-up observations by more powerful telescopes like Webb and Hubble, or with future observatories employing technologies unavailable today.

As it pans across the sky observing distant galaxies, SPHEREx’s telescope will also catch glimpses of targets within our own Solar System. These include planets and thousands of asteroids, comets, icy worlds beyond Pluto, and interstellar objects that occasionally transit through the Solar System. SPHEREx will measure water, iron, carbon dioxide, and multiple types of ices (water, methane, nitrogen, ammonia, and others) on the surface of these worlds closer to home.

Finding savings where possible

A second NASA mission hitched a ride to space with SPHEREx, deploying into a similar orbit a few minutes after the Falcon 9 released its primary payload.

This secondary mission, called PUNCH, consists of four suitcase-size satellites that will study the solar corona, or outer atmosphere, a volatile sheath of super-heated gas extending millions of miles from the Sun’s surface. NASA expects PUNCH’s $150 million mission will reveal information about how the corona generates the solar wind, charged particles that stream continuously from the Sun in all directions.

There are tangible reasons to study the solar wind. These particles travel through space at speeds close to 1 million mph, and upon reaching Earth, interact with our planet’s magnetic field. Bursts of energy erupting from the Sun, like solar flares, can generate shocks in the solar wind current, leading to higher risks for geomagnetic storms. These have a range of effects on the Earth, ranging from colorful but benign auroras to disruptions to satellite operations and navigation and communications systems.

Other NASA spacecraft have zoomed in to observe second-by-second changes in the Sun’s atmosphere, and a fleet of sentinels closer to Earth measure the solar wind after it has traveled through space for three days. PUNCH will combine the imaging capacities of four small satellites to create a single “virtual instrument” with a view broad enough to monitor the solar wind as it leaves the Sun and courses farther into the Solar System.

Hailing a ride to space is not as simple as opening up Uber on your phone, but sharing rides offers a more cost-effective way to launch small satellites like PUNCH. SpaceX regularly launches rideshare flights, called Transporter missions, on its Falcon 9 rocket, sometimes with more than 100 satellites on a single launch going to a standard orbit. Missions like SPHEREx and PUNCH aren’t usually a good fit for SpaceX’s Transporter missions because they have more stringent demands for cleanliness and must launch into bespoke orbits to achieve their science goals.

Matching SPHEREx and PUNCH to the same rocket required both missions to go to the same orbit and be ready for launch at the same time. That’s a luxury not often available to NASA’s mission planners, but where possible, the agency wants to take advantage of rideshare opportunities.

Launching the PUNCH mission on its own dedicated rocket would have likely cost at least $15 million. This is the approximate price of a mission on Firefly Aerospace’s Alpha rocket, the cheapest US launcher with the muscle to lift the PUNCH satellites into orbit.

“This is a real change in how we do business,” said Mark Clampin, the acting deputy administrator for NASA’s Science Mission Directorate, or SMD. “It’s a new strategy that SMD is working where we can maximize the efficiency of launches by flying two payloads at once, so we maximize the science return.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

No, that’s not a cosmic cone of shame—it’s NASA’s newest space telescope Read More »

former-google-ceo-eric-schmidt-is-the-new-leader-of-relativity-space

Former Google CEO Eric Schmidt is the new leader of Relativity Space

Another Silicon Valley investor is getting into the rocket business.

Former Google chief executive Eric Schmidt has taken a controlling interest in the Long Beach, California-based Relativity Space. The New York Times first reported the change becoming official, after Schmidt told employees in an all-hands meeting on Monday.

Schmidt’s involvement with Relativity has been quietly discussed among space industry insiders for a few months. Multiple sources told Ars that he has largely been bankrolling the company since the end of October, when the company’s previous fundraising dried up.

It is not immediately clear why Schmidt is taking a hands-on approach at Relativity. However, it is one of the few US-based companies with a credible path toward developing a medium-lift rocket that could potentially challenge the dominance of SpaceX and its Falcon 9 rocket. If the Terran R booster becomes commercially successful, it could play a big role in launching megaconstellations.

Schmidt’s ascension also means that Tim Ellis, the company’s co-founder, chief executive, and almost sole public persona for nearly a decade, is now out of a leadership position.

“Today marks a powerful new chapter as Eric Schmidt becomes Relativity’s CEO, while also providing substantial financial backing,” Ellis wrote on the social media site X. “I know there’s no one more tenacious or passionate to propel this dream forward. We have been working together to ensure a smooth transition, and I’ll proudly continue to support the team as Co-founder and Board member.”

Terran R’s road to launch

On Monday, Relativity also released a nearly 45-minute video that outlines the development of the Terran R rocket to date and the lengths to which it must go to reach the launch pad. Tellingly, Ellis appears only briefly in the video, which features several other senior officials who presumably will remain with the company, including Chief Operating Officer Zach Dunn.

Former Google CEO Eric Schmidt is the new leader of Relativity Space Read More »

after-less-than-a-day,-the-athena-lander-is-dead-on-the-moon

After less than a day, the Athena lander is dead on the Moon

NASA expected Athena to have a reasonable chance of success. Although it landed on its side, Odysseus was generally counted as a win because it accomplished most of its tasks. Accordingly, NASA loaded a number of instruments onto the lander. Most notable among these was the PRIME-1 experiment, an ice drill to sample and analyze any ice that lies below the surface.

A dark day, but not the end

“After landing, mission controllers were able to accelerate several program and payload milestones, including NASA’s PRIME-1 suite, before the lander’s batteries depleted,” the company’s statement said. However, this likely means that the company was able to contact the instrument but not perform any meaningful scientific activities.

NASA has accepted that these commercial lunar missions are high-risk, high-reward. (Firefly’s successful landing last weekend offers an example of high rewards). It is paying the companies, on average, $100 million or less per flight. This is a fraction of what NASA would pay through a traditional procurement program. The hope is that, after surviving initial failures, companies like Intuitive Machines will learn from their mistakes and open a low-cost, reliable pathway to the lunar surface.

Even so, this failure has to be painful for NASA and Intuitive Machines. The space agency lost out on some valuable science, and Intuitive Machines has taken a step backward with this mission rather than moving forward as it had hoped to do.

Fortunately, this is unlikely to be the end for the company. NASA has committed to a third and fourth mission on Intuitive Machines’ lander, the next of which could come during the first quarter of 2026. NASA has also contracted with the company to build a small network of satellites around the Moon for communications and positioning services. So although the company’s fortunes look dark today, they are not permanently shadowed like the craters on the Moon that NASA hopes to soon explore.

After less than a day, the Athena lander is dead on the Moon Read More »