Space

us-spy-satellites-built-by-spacex-send-signals-in-the-“wrong-direction”

US spy satellites built by SpaceX send signals in the “wrong direction”


Spy satellites emit surprising signals

It seems US didn’t coordinate Starshield’s unusual spectrum use with other countries.

Image of a satellite in space and the Earth in the background.

Image of a Starshield satellite from SpaceX’s website. Credit: SpaceX

Image of a Starshield satellite from SpaceX’s website. Credit: SpaceX

About 170 Starshield satellites built by SpaceX for the US government’s National Reconnaissance Office (NRO) have been sending signals in the wrong direction, a satellite researcher found.

The SpaceX-built spy satellites are helping the NRO greatly expand its satellite surveillance capabilities, but the purpose of these signals is unknown. The signals are sent from space to Earth in a frequency band that’s allocated internationally for Earth-to-space and space-to-space transmissions.

There have been no public complaints of interference caused by the surprising Starshield emissions. But the researcher who found them says they highlight a troubling lack of transparency in how the US government manages the use of spectrum and a failure to coordinate spectrum usage with other countries.

Scott Tilley, an engineering technologist and amateur radio astronomer in British Columbia, discovered the signals in late September or early October while working on another project. He found them in various parts of the 2025–2110 MHz band, and from his location, he was able to confirm that 170 satellites were emitting the signals over Canada, the United States, and Mexico. Given the global nature of the Starshield constellation, the signals may be emitted over other countries as well.

“This particular band is allocated by the ITU [International Telecommunication Union], the United States, and Canada primarily as an uplink band to spacecraft on orbit—in other words, things in space, so satellite receivers will be listening on these frequencies,” Tilley told Ars. “If you’ve got a loud constellation of signals blasting away on the same frequencies, it has the potential to interfere with the reception of ground station signals being directed at satellites on orbit.”

In the US, users of the 2025–2110 MHz portion of the S-Band include NASA and the National Oceanic and Atmospheric Administration (NOAA), as well as nongovernmental users like TV news broadcasters that have vehicles equipped with satellites to broadcast from remote locations.

Experts told Ars that the NRO likely coordinated with the US National Telecommunications and Information Administration (NTIA) to ensure that signals wouldn’t interfere with other spectrum users. A decision to allow the emissions wouldn’t necessarily be made public, they said. But conflicts with other governments are still possible, especially if the signals are found to interfere with users of the frequencies in other countries.

Surprising signals

A man standing outdoors in front of two large antennas.

Scott Tilley and his antennas.

Credit: Scott Tilley

Scott Tilley and his antennas. Credit: Scott Tilley

Tilley previously made headlines in 2018 when he located a satellite that NASA had lost contact with in 2005. For his new discovery, Tilley published data and a technical paper describing the “strong wideband S-band emissions,” and his work was featured by NPR on October 17.

Tilley’s technical paper said emissions were detected from 170 satellites out of the 193 known Starshield satellites. Emissions have since been detected from one more satellite, making it 171 out of 193, he told Ars. “The apparent downlink use of an uplink-allocated band, if confirmed by authorities, warrants prompt technical and regulatory review to assess interference risk and ensure compliance” with ITU regulations, Tilley’s paper said.

Tilley said he uses a mix of omnidirectional antennas and dish antennas at his home to receive signals, along with “software-defined radios and quite a bit of proprietary software I’ve written or open source software that I use for analysis work.” The signals did not stop when the paper was published. Tilley said the emissions are powerful enough to be received by “relatively small ground stations.”

Tilley’s paper said that Starshield satellites emit signals with a width of 9 MHz and signal-to-noise (SNR) ratios of 10 to 15 decibels. “A 10 dB SNR means the received signal power is ten times greater than the noise power in the same bandwidth,” while “20 dB means one hundred times,” Tilley told Ars.

Other Starshield signals that were 4 or 5 MHz wide “have been observed to change frequency from day to day with SNR exceeding 20dB,” his paper said. “Also observed from time to time are other weaker wide signals from 2025–2110 MHz what may be artifacts or actual intentional emissions.”

The 2025–2110 MHz band is used by NASA for science missions and by other countries for similar missions, Tilley noted. “Any other radio activity that’s occurring on this band is intentionally limited to avoid causing disruption to its primary purpose,” he said.

The band is used for some fully terrestrial, non-space purposes. Mobile service is allowed in 2025–2110 MHz, but ITU rules say that “administrations shall not introduce high-density mobile systems” in these frequencies. The band is also licensed in the US for non-federal terrestrial services, including the Broadcast Auxiliary Service, Cable Television Relay Service, and Local Television Transmission Service.

While Earth-based systems using the band, such as TV links from mobile studios, have legal protection against interference, Tilley noted that “they normally use highly directional and local signals to link a field crew with a studio… they’re not aimed into space but at a terrestrial target with a very directional antenna.” A trade group representing the US broadcast industry told Ars that it hasn’t observed any interference from Starshield satellites.

“There without anybody knowing it”

Spectrum consultant Rick Reaser told Ars that Starshield’s space-to-Earth transmissions likely haven’t caused any interference problems. “You would not see this unless you were looking for it, or if it turns out that your receiver looks for everything, which most receivers aren’t going to do,” he said.

Reaser said it appears that “whatever they’re doing, they’ve come up with a way to sort of be there without anybody knowing it,” or at least until Tilley noticed the signals.

“But then the question is, can somebody prove that that’s caused a problem?” Reaser said. Other systems using the same spectrum in the correct direction probably aren’t pointed directly at the Starshield satellites, he said.

Reaser’s extensive government experience includes managing spectrum for the Defense Department, negotiating a spectrum-sharing agreement with the European Union, and overseeing the development of new signals for GPS. Reaser said that Tilley’s findings are interesting because the signals would be hard to discover.

“It is being used in the wrong direction, if they’re coming in downlink, that’s supposed to be an uplink,” Reaser said. As for what the signals are being used for, Reaser said he doesn’t know. “It could be communication, it could be all sorts of things,” he said.

Tilley’s paper said the “results raise questions about frequency-allocation compliance and the broader need for transparent coordination among governmental, commercial, and scientific stakeholders.” He argues that international coordination is becoming more important because of the ongoing deployment of large constellations of satellites that could cause harmful interference.

“Cooperative disclosure—without compromising legitimate security interests—will be essential to balance national capability with the shared responsibility of preserving an orderly and predictable radio environment,” his paper said. “The findings presented here are offered in that spirit: not as accusation, but as a public-interest disclosure grounded in reproducible measurement and open analysis. The data, techniques, and references provided enable independent verification by qualified parties without requiring access to proprietary or classified information.”

While Tilley doesn’t know exactly what the emissions are for, his paper said the “signal characteristics—strong, coherent, and highly predictable carriers from a large constellation—create the technical conditions under which opportunistic or deliberate PNT exploitation could occur.”

PNT refers to Positioning, Navigation, and Timing (PNT) applications. “While it is not suggested that the system was designed for that role, the combination of wideband data channels and persistent carrier tones in a globally distributed or even regionally operated network represents a practical foundation for such use, either by friendly forces in contested environments or by third parties seeking situational awareness,” the paper said.

Emissions may have been approved in secret

Tilley told us that a few Starshield satellites launched just recently, in late September, have not emitted signals while moving toward their final orbits. He said this suggests the emissions are for an “operational payload” and not merely for telemetry, tracking, and control (TT&C).

“This could mean that [the newest satellites] don’t have this payload or that the emissions are not part of TT&C and may begin once these satellites achieve their place within the constellation,” Tilley told Ars. “If these emissions are TT&C, you would expect them to be active especially during the early phases of the mission, when the satellites are actively being tested and moved into position within the constellation.”

Whatever they’re for, Reaser said the emissions were likely approved by the NTIA and that the agency would likely have consulted with the Federal Communications Commission. For federal spectrum use, these kinds of decisions aren’t necessarily made public, he said.

“NRO would have to coordinate that through the NTIA to make sure they didn’t have an interference problem,” Reaser said. “And by the way, this happens a lot. People figure out a way [to transmit] on what they call a non-interference basis, and that’s probably how they got this approved. They say, ‘listen, if somebody reports interference, then you have to shut down.’”

Tilley said it’s clear that “persistent S-band emissions are occurring in the 2025–2110 MHz range without formal ITU coordination.” Claims that the downlink use was approved by the NTIA in a non-public decision “underscore, rather than resolve, the transparency problem,” he told Ars.

An NTIA spokesperson declined to comment. The NRO and FCC did not provide any comment in response to requests from Ars.

SpaceX just “a contractor for the US government”

Randall Berry, a Northwestern University professor of electrical and computer engineering, agreed with Reaser that it’s likely the NTIA approved the downlink use of the band and that this decision was not made public. Getting NTIA clearance is “the proper way this should be done,” he said.

“It would be surprising if NTIA was not aware, as Starshield is a government-operated system,” Berry told Ars. While NASA and other agencies use the band for Earth-to-space transmissions, “they may have been able to show that the Starshield space-to-Earth signals do not create harmful interference with these Earth-to-space signals,” he said.

There is another potential explanation that is less likely but more sinister. Berry said it’s possible that “SpaceX did not make this known to NTIA when the system was cleared for federal use.” Berry said this would be “surprising and potentially problematic.”

Digital rendering of a satellite in space.

SpaceX rendering of a Starshield satellite.

Credit: SpaceX

SpaceX rendering of a Starshield satellite. Credit: SpaceX

Tilley doesn’t think SpaceX is responsible for the emissions. While Starshield relies on technology built for the commercial Starlink broadband system of low Earth orbit satellites, Elon Musk’s space company made the Starshield satellites in its role as a contractor for the US government.

“I think [SpaceX is] just operating as a contractor for the US government,” Tilley said. “They built a satellite to the government specs provided for them and launched it for them. And from what I understand, the National Reconnaissance Office is the operator.”

SpaceX did not respond to a request for comment.

TV broadcasters conduct interference analysis

TV broadcasters with news trucks that use the same frequencies “protect their band vigorously” and would have reported interference if it was affecting their transmissions, Reaser said. This type of spectrum use is known as Electronic News Gathering (ENG).

The National Association of Broadcasters told Ars that it “has been closely tracking recent reports concerning satellite downlink operation in the 2025–2110 MHz frequency band… While it’s not clear that satellite downlink operations are authorized by international treaty in this range, such operations are uncommon, and we are not aware of any interference complaints related to downlink use.”

The NAB investigated after Tilley’s report. “When the Tilley report first surfaced, NAB conducted an interference analysis—based on some assumptions given that Starshield’s operating parameters have not been publicly disclosed,” the group told us. “That analysis found that interference with ENG systems is unlikely. We believe the proposed downlink operations are likely compatible with broadcaster use of the band, though coordination issues with the International Telecommunication Union (ITU) could still arise.”

Tilley said that a finding of interference being unlikely “addresses only performance, not legality… coordination conducted only within US domestic channels does not meet international requirements under the ITU Radio Regulations. This deployment is not one or two satellites, it is a distributed constellation of hundreds of objects with potential global implications.”

Canada agency: No coordination with ITU or US

When contacted by Ars, an ITU spokesperson said the agency is “unable to provide any comment or additional information on the specific matter referenced.” The ITU said that interference concerns “can be formally raised by national administrations” and that the ITU’s Radio Regulations Board “carefully examines the specifics of the case and determines the most appropriate course of action to address it in line with ITU procedures.”

The Canadian Space Agency (CSA) told Ars that its “missions operating within the frequency band have not yet identified any instances of interference that negatively impact their operations and can be attributed to the referenced emissions.” The CSA indicated that there hasn’t been any coordination with the ITU or the US over the new emissions.

“To date, no coordination process has been initiated for the satellite network in question,” the CSA told Ars. “Coordination of satellite networks is carried out through the International Telecommunication Union (ITU) Radio Regulation, with Innovation, Science and Economic Development Canada (ISED) serving as the responsible national authority.”

The European Space Agency also uses the 2025–2100 band for TT&C. We contacted the agency but did not receive any comment.

The lack of coordination “remains the central issue,” Tilley told Ars. “This band is globally allocated for Earth-to-space uplinks and limited space-to-space use, not continuous space-to-Earth transmissions.”

NASA needs protection from interference

An NTIA spectrum-use report updated in 2015 said NASA “operates earth stations in this band for tracking and command of manned and unmanned Earth-orbiting satellites and space vehicles either for Earth-to-space links for satellites in all types of orbits or through space-to-space links using the Tracking Data and Relay Satellite System (TDRSS). These earth stations control ninety domestic and international space missions including the Space Shuttle, the Hubble Space Telescope, and the International Space Station.”

Additionally, the NOAA “operates earth stations in this band to control the Geostationary Operational Environmental Satellite (GOES) and Polar Operational Environmental Satellite (POES) meteorological satellite systems,” which collect data used by the National Weather Service. We contacted NASA and NOAA, but neither agency provided comment to Ars.

NASA’s use of the band has increased in recent years. The NTIA told the FCC in 2021 that 2025–2110 MHz is “heavily used today and require[s] extensive coordination even among federal users.” The band “has seen dramatically increased demand for federal use as federal operations have shifted from federal bands that were repurposed to accommodate new commercial wireless broadband operations.”

A 2021 NASA memo included in the filing said that NASA would only support commercial launch providers using the band if their use was limited to sending commands to launch vehicles for recovery and retrieval purposes. Even with that limit, commercial launch providers would cause “significant interference” for existing federal operations in the band if the commercial use isn’t coordinated through the NTIA, the memo said.

“NASA makes extensive use of this band (i.e., currently 382 assignments) for both transmissions from earth stations supporting NASA spacecraft (Earth-to-space) and transmissions from NASA’s Tracking and Data Relay Satellite System (TDRSS) to user spacecraft (space-to-space), both of which are critical to NASA operations,” the memo said.

In 2024, the FCC issued an order allowing non-federal space launch operations to use the 2025–2110 MHz band on a secondary basis. The allocation is “limited to space launch telecommand transmissions and will require commercial space launch providers to coordinate with non-Federal terrestrial licensees… and NTIA,” the FCC order said.

International non-interference rules

While US agencies may not object to the Starshield emissions, that doesn’t guarantee there will be no trouble with other countries. Article 4.4 of ITU regulations says that member nations may not assign frequencies that conflict with the Table of Frequency Allocations “except on the express condition that such a station, when using such a frequency assignment, shall not cause harmful interference to, and shall not claim protection from harmful interference caused by, a station operating in accordance with the provisions.”

Reaser said that under Article 4.4, entities that are caught interfering with other spectrum users are “supposed to shut down.” But if the Starshield users were accused of interference, they would probably “open negotiations with the offended party” instead of immediately stopping the emissions, he said.

“My guess is they were allowed to operate on a non-interference basis and if there is an interference issue, they’d have to go figure a way to resolve them,” he said.

Tilley told Ars that Article 4.4 allows for non-interference use domestically but “is not a blank check for continuous, global downlinks from a constellation.” In that case, “international coordination duties still apply,” he said.

Tilley pointed out that under the Convention on Registration of Objects Launched into Outer Space, states must report the general function of a space object. “Objects believed to be part of the Starshield constellation have been registered with UNOOSA [United Nations Office for Outer Space Affairs] under the broad description: ‘Spacecraft engaged in practical applications and uses of space technology such as weather or communications,’” his paper said.

Tilley told Ars that a vague description such as this “may satisfy the letter of filing requirements, but it contradicts the spirit” of international agreements. He contends that filings should at least state whether a satellite is for military purposes.

“The real risk is that we are no longer dealing with one or two satellites but with massive constellations that, by their very design, are global in scope,” he told Ars. “Unilateral use of space and spectrum affects every nation. As the examples of US and Chinese behavior illustrate, we are beginning from uncertain ground when it comes to large, militarily oriented mega-constellations, and, at the very least, this trend distorts the intent and spirit of international law.”

China’s constellation

Tilley said he has tracked China’s Guowang constellation and its use of “spectrum within the 1250–1300 MHz range, which is not allocated for space-to-Earth communications.” China, he said, “filed advance notice and coordination requests with the ITU for this spectrum but was not granted protection for its non-compliant use. As a result, later Chinese filings notifying and completing due diligence with the ITU omit this spectrum, yet the satellites are using it over other nations. This shows that the Chinese government consulted internationally and proceeded anyway, while the US government simply did not consult at all.”

By contrast, Canada submitted “an unusual level of detail” to the ITU for its military satellite Sapphire and coordinated fully with the ITU, he said.

Tilley said he reported his findings on Starshield emissions “directly to various western space agencies and the Canadian government’s spectrum management regulators” at the ISED.

“The Canadian government has acknowledged my report, and it has been disseminated within their departments, according to a senior ISED director’s response to me,” Tilley said, adding that he is continuing to collaborate “with other researchers to assist in the gathering of more data on the scope and impact of these emissions.”

The ISED told Ars that it “takes any reports of interference seriously and is not aware of any instances or complaints in these bands. As a general practice, complaints of potential interference are investigated to determine both the cause and possible resolutions. If it is determined that the source of interference is not Canadian, ISED works with its regulatory counterparts in the relevant administration to resolve the issue. ISED has well-established working arrangements with counterparts in other countries to address frequency coordination or interference matters.”

Accidental discovery

Two pictures of large antennas set up outdoors.

Antennas used by Scott Tilley.

Credit: Scott Tilley

Antennas used by Scott Tilley. Credit: Scott Tilley

Tilley’s discovery of Starshield signals happened because of “a clumsy move at the keyboard,” he told NPR. “I was resetting some stuff, and then all of a sudden, I’m looking at the wrong antenna, the wrong band,” he said.

People using the spectrum for Earth-to-space transmissions generally wouldn’t have any reason to listen for transmissions on the same frequencies, Tilley told Ars. Satellites using 2025–2100 MHz for Earth-to-space transmissions have their downlink operations on other frequencies, he said.

“The whole reason why I publicly revealed this rather than just quietly sit on it is to alert spacecraft operators that don’t normally listen on this band… that they should perform risk assessments and assess whether their missions have suffered any interference or could suffer interference and be prepared to deal with that,” he said.

A spacecraft operator may not know “a satellite is receiving interference unless the satellite is refusing to communicate with them or asking for the ground station to repeat the message over and over again,” Tilley said. “Unless they specifically have a reason to look or it becomes particularly onerous for them, they may not immediately realize what’s going on. It’s not like they’re sitting there watching the spectrum to see unusual signals that could interfere with the spacecraft.”

While NPR paraphrased Tilley as saying that the transmissions could be “designed to hide Starshield’s operations,” he told Ars that this characterization is “maybe a bit strongly worded.”

“It’s certainly an unusual place to put something. I don’t want to speculate about what the real intentions are, but it certainly could raise a question in one’s mind as to why they would choose to emit there. We really don’t know and probably never will know,” Tilley told us.

How amateurs track Starshield

After finding the signals, Tilley determined they were being sent by Starshield satellites by consulting data collected by amateurs on the constellation. SpaceX launches the satellites into what Tilley called classified orbits, but the space company distributes some information that can be used to track their locations.

For safety reasons, SpaceX publishes “a notice to airmen and sailors that they’re going to be dropping boosters and debris in hazard areas… amateurs use those to determine the orbital plane the launch is going to go into,” Tilley said. “Once we know that, we just basically wait for optical windows when the lighting is good, and then we’re able to pick up the objects and start tracking them and then start cataloguing them and generating orbits. A group of us around the world do that. And over the last year and a half or so since they started launching the bulk of this constellation, the amateurs have amassed considerable body of orbital data on this constellation.”

After accidentally discovering the emissions, Tilley said he used open source software to “compare the Doppler signal I was receiving to the orbital elements… and immediately started coming back with hits to Starshield and nothing else.” He said this means that “the tens of thousands of other objects in orbit didn’t match the radio Doppler characteristics that these objects have.”

Tilley is still keeping an eye on the transmissions. He told us that “I’m continuing to hear the signals, record them, and monitor developments within the constellation.”

Photo of Jon Brodkin

Jon is a Senior IT Reporter for Ars Technica. He covers the telecom industry, Federal Communications Commission rulemakings, broadband consumer affairs, court cases, and government regulation of the tech industry.

US spy satellites built by SpaceX send signals in the “wrong direction” Read More »

what-would-a-“simplified”-starship-plan-for-the-moon-actually-look-like?

What would a “simplified” Starship plan for the Moon actually look like?


The problem is that it may be difficult to find options that both NASA and SpaceX like.

An image of SpaceX’s “Lunar” variant of Starship on the Moon’s surface. Credit: SpaceX

In what will likely be his most consequential act as NASA’s interim leader, Sean Duffy said last month that the space agency was “opening up” its competition to develop a lunar lander that will put humans on the surface of the Moon.

As part of this move, Duffy asked NASA’s current lunar lander contractors, SpaceX and Blue Origin, for more nimble plans. Neither has specified those plans publicly, but a recent update from SpaceX referenced a “simplified” version of the Starship system it’s building to help NASA return humans to the Moon.

“Since the contract was awarded, we have been consistently responsive to NASA as requirements for Artemis III have changed and have shared ideas on how to simplify the mission to align with national priorities,” the company said. “In response to the latest calls, we’ve shared and are formally assessing a simplified mission architecture and concept of operations that we believe will result in a faster return to the Moon while simultaneously improving crew safety.”

So what would a simplified architecture look like? It is difficult to say for sure, but there are some interesting ideas floating around.

First, let’s make a couple of assumptions. Any approach to shortening the Artemis III timeline should not involve major hardware changes. This rules out a “stubby” version of Starship, which would require a significant reworking of the vehicle’s internals. Essentially, any new plan should use hardware that exists largely in the structural shape and form it’s in. And for SpaceX, we’ll assume that “simplified” means not working directly with other contractors beyond those already involved in Artemis III.

With these ground rules, there are two changes that SpaceX, in conjunction with NASA, could make to simplify or potentially accelerate Artemis: “Expendable Starships” and “Enter the Dragon.”

Expendable Starships

One of the biggest challenges with the existing plan is refueling in low-Earth orbit. Essentially, SpaceX must launch a “depot” variant of Starship and then fuel it with “tanker” Starship upper stages. Once this depot is full, the “lunar lander” variant of Starship launches, is refueled, and then flies to the Moon. There, it awaits a crew of astronauts on board Orion to land them on the Moon and return them to lunar orbit.

Estimates vary widely for how many ‘”tanker” Starships will be required to fuel the depot for a lunar mission. In truth, no one will know the answer until there is a mature Starship design with real-world performance numbers and demonstrated efficiency of propellant transfer and storage.

Critics of the SpaceX plan, and there are many, say the mission architecture is clunky and untenable. One household name in the space industry recently told Ars he believes it would take up to 20 to 40 “tanker” launches to fill a depot. That seems high, but a number in the ballpark of 12 to 20 flights (probably with the next-generation V4 ships) is realistic.

That is a lot of launches, to be sure. But it’s not inconceivable that a company now regularly launching three Falcon 9 rockets a week could launch a dozen or more Starships per month in the not-too-distant future.

There is one relatively straightforward way to cut down on the number of “tanker” launches. For early Artemis missions, SpaceX could use expendable “tanker” Starships rather than landing and reusing them. It is not clear how much this would boost the capacity of Starship, but it likely would be considerable. SpaceX probably could remove the grid fins (multiple tons), as well as a tiled heat shield that (according to rumors, it must be said) is running considerably more massive than what was budgeted for. There also would be propellant mass savings without the need for reentry and landing burns.

Using an optimized, expendable Starship might reduce the number of tanker missions required by up to 50 percent. There are downsides, including a significant increase in costs and an undermining of the whole point of Starship: full and rapid reuse.

It is safe to say that Starship will be the largest human spacecraft to land on the Moon by far.

Credit: SpaceX

It is safe to say that Starship will be the largest human spacecraft to land on the Moon by far. Credit: SpaceX

There is a third downside, and this is perhaps the most important one. An “expendable” Starship plan would be anathema to the leadership of SpaceX, including founder Elon Musk. Officials there do not believe the space industry has fully digested how Starship will transform the launch industry.

“You don’t yet understand how many Starship launches will happen,” a senior SpaceX source told Ars.

The company is aiming to launch 1 million tons of payload to orbit per year, the majority of which will be propellant. SpaceX simply believes that once it locks in on Starship operations, launching a dozen or many more rockets per month won’t be a big deal. So why waste time on expendable rockets? That era is over.

Enter the Dragon

A second option would be to rely solely on SpaceX hardware.

I don’t expect NASA to be interested in this idea, but it’s worth discussing. Nearly a year ago, in the immediate aftermath of the presidential election, Republican space officials were considering canceling Artemis and substituting a “competition” similar to the Commercial Cargo program. It was thought that both SpaceX and Blue Origin would bid plans to land humans on the Moon and that NASA would fund both.

These plans have largely fallen by the wayside in the last 12 months, though. NASA (and perhaps most importantly, paymasters in Congress) prefer to stick with the Space Launch System rocket and Orion spacecraft for the initial Artemis missions.

But if pressed, SpaceX could come up with a simplified Moon landing architecture that requires fewer refuelings. There are multiple ways this could be done, so I’ll offer just one variant here:

  • SpaceX launches the “lunar” variant of Starship into low-Earth orbit, uncrewed
  • SpaceX launches two “depot” variants of Starship into orbit
  • Both depots are fueled (perhaps requiring 3-5 “tanker” launches each)
  • One of these depots flies out to low-lunar orbit, the other fuels the Lunar starship previously launched into low-Earth orbit
  • A crew of four astronauts launches on Crew Dragon, which docks with the Lunar Starship
  • Crew transfers to Starship, which undocks from Dragon, flies to the Moon, and lands
  • After days on the surface, this Starship launches from the Moon and refuels from the second depot in lunar orbit
  • Starship flies back to low-Earth orbit, docks with Dragon, and Dragon returns to Earth

Does that sound complicated? Sure. But it’s arguably not as complicated as an Orion-based mission, and it would likely necessitate fewer refuelings. This is because Starship does not need to rendezvous with Orion in a near-rectilinear halo orbit, and there is no 100-day loiter requirement for a fully fueled Starship at the Moon.

This solution, however, would likely be viewed as toxic by NASA’s safety community due to the need to refuel in lunar orbit with crew on board. A decade ago, when SpaceX proposed fueling the Falcon 9 vehicle on the ground with astronauts on board—a procedure known as load-and-go—engineers tasked with the crew’s safety went berserk.

“When SpaceX came to us and said we want to load the crew first, and then the propellant, mushroom clouds went off in our safety community,” Phil McAlister, NASA’s then-chief of commercial spaceflight, told me when I was writing the book Reentry. “I mean, hair-on-fire stuff. It was just conventional wisdom that you load the propellant first and get it thermally stable. Fueling is a very dynamic operation. The vehicle is popping and hissing. The safety community was adamantly against this.”

It’s probably safe to say that SpaceX would be unhappy with the first solution offered here, and NASA would be unhappy with the second one. For these reasons, SpaceX’s current architecture may well remain the default one for Artemis III.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

What would a “simplified” Starship plan for the Moon actually look like? Read More »

with-another-record-broken,-the-world’s-busiest-spaceport-keeps-getting-busier

With another record broken, the world’s busiest spaceport keeps getting busier


It’s not just the number of rocket launches, but how much stuff they’re carrying into orbit.

With 29 Starlink satellites onboard, a Falcon 9 rocket streaks through the night sky over Cape Canaveral Space Force Station, Florida, on Monday night. Credit: Stephen Clark/Ars Technica

CAPE CANAVERAL, Florida—Another Falcon 9 rocket fired off its launch pad here on Monday night, taking with it another 29 Starlink Internet satellites to orbit.

This was the 94th orbital launch from Florida’s Space Coast so far in 2025, breaking the previous record for the most satellite launches in a calendar year from the world’s busiest spaceport. Monday night’s launch came two days after a Chinese Long March 11 rocket lifted off from an oceangoing platform on the opposite side of the world, marking humanity’s 255th mission to reach orbit this year, a new annual record for global launch activity.

As of Wednesday, a handful of additional missions have pushed the global figure this year to 259, putting the world on pace for around 300 orbital launches by the end of 2025. This will more than double the global tally of 135 orbital launches in 2021.

Routine vs. complacency

Waiting in the darkness a few miles away from the launch pad, I glanced around at my surroundings before watching SpaceX’s Falcon 9 thunder into the sky. There were no throngs of space enthusiasts anxiously waiting for the rocket to light up the night. No line of photographers snapping photos. Just this reporter and two chipper retirees enjoying what a decade ago would have attracted far more attention.

Go to your local airport and you’ll probably find more people posted up at a plane-spotting park at the end of the runway. Still, a rocket launch is something special. On the same night that I watched the 94th launch of the year depart from Cape Canaveral, Orlando International Airport saw the same number of airplane departures in just three hours.

The crowds still turn out for more meaningful launches, such as a test flight of SpaceX’s Starship megarocket in Texas or Blue Origin’s attempt to launch its second New Glenn heavy-lifter here Sunday. But those are not the norm. Generations of aerospace engineers were taught that spaceflight is not routine for fear of falling into complacency, leading to failure, and in some cases, death.

Compared to air travel, the mantra remains valid. Rockets are unforgiving, with engines operating under extreme pressures, at high thrust, and unable to suck in oxygen from the atmosphere as a reactant for combustion. There are fewer redundancies in a rocket than in an airplane.

The Falcon 9’s established failure rate is less than 1 percent, well short of any safety standard for commercial air travel but good enough to be the most successful orbital-class in history. Given the Falcon 9’s track record, SpaceX seems to have found a way to overcome the temptation for complacency.

A Chinese Long March 11 rocket carrying three Shiyan 32 test satellites lifts off from waters off the coast of Haiyang in eastern China’s Shandong province on Saturday. Credit: Guo Jinqi/Xinhua via Getty Images

Following the trend

The upward trend in rocket launches hasn’t always been the case. Launch numbers were steady for most of the 2010s, following a downward trend in the 2000s, with as few as 52 orbital launches in 2005, the lowest number since the nascent era of spaceflight in 1961. There were just seven launches from here in Florida that year.

The numbers have picked up dramatically in the last five years as SpaceX has mastered reusable rocketry.

It’s important to look at not just the number of launches but also how much stuff rockets are actually putting into orbit. More than half of this year’s launches were performed using SpaceX’s Falcon 9 rocket, and the majority of those deployed Starlink satellites for SpaceX’s global Internet network. Each spacecraft is relatively small in size and weight, but SpaceX stacks up to 29 of them on a single Falcon 9 to max out the rocket’s carrying capacity.

All this mass adds up to make SpaceX’s dominance of the launch industry appear even more absolute. According to analyses by BryceTech, an engineering and space industry consulting firm, SpaceX has launched 86 percent of all the world’s payload mass over the 18 months from the beginning of 2024 through June 30 of this year.

That’s roughly 2.98 million kilograms of the approximately 3.46 million kilograms (3,281 of 3,819 tons) of satellite hardware and cargo that all the world’s rockets placed into orbit during that timeframe.

The charts below were created by Ars Technica using publicly available launch numbers and payload mass estimates from BryceTech. The first illustrates the rising launch cadence at Cape Canaveral Space Force Station and NASA’s Kennedy Space Center, located next to one another in Florida. Launches from other US-licensed spaceports, primarily Vandenberg Space Force Base, California, and Rocket Lab’s base at Māhia Peninsula in New Zealand, are also on the rise.

These numbers represent rockets that reached low-Earth orbit. We didn’t include test flights of SpaceX’s Starship rocket in the chart because all of its launches have intentionally flown on suborbital trajectories.

In the second chart, we break down the payload upmass to orbit from SpaceX, other US companies, China, Russia, and other international launch providers.

Launch rates are on a clear upward trend, while SpaceX has launched 86 percent of the world’s total payload mass to orbit since the beginning of 2024. Credit: Stephen Clark/Ars Technica/BryceTech

Will it continue?

It’s a good bet that payload upmass will continue to rise in the coming years, with heavy cargo heading to orbit to further expand SpaceX’s Starlink communications network and build out new megaconstellations from Amazon, China, and others. The US military’s Golden Dome missile defense shield will also have a ravenous appetite for rockets to get it into space.

SpaceX’s Starship megarocket could begin flying to low-Earth orbit next year, and if it does, SpaceX’s preeminence in delivering mass to orbit will remain assured. Starship’s first real payloads will likely be SpaceX’s next-generation Starlink satellites. These larger, heavier, more capable spacecraft will launch 60 at a time on Starship, further stretching SpaceX’s lead in the upmass war.

But Starship’s arrival will come at the expense of the workhorse Falcon 9, which lacks the capacity to haul the next-gen Starlinks to orbit. “This year and next year I anticipate will be the highest Falcon launch rates that we will see,” said Stephanie Bednarek, SpaceX’s vice president of commercial sales, at an industry conference in July.

SpaceX is on pace for between 165 and 170 Falcon 9 launches this year, with 144 flights already in the books for 2025. Last year’s total for Falcon 9 and Falcon Heavy was 134 missions. SpaceX has not announced how many Falcon 9 and Falcon Heavy launches it plans for next year.

Starship is designed to be fully and rapidly reusable, eventually enabling multiple flights per day. But that’s still a long way off, and it’s unknown how many years it might take for Starship to surpass the Falcon 9’s proven launch tempo.

A Starship rocket and Super Heavy booster lift off from Starbase, Texas. Credit: SpaceX

In any case, with Starship’s heavy-lifting capacity and upgraded next-gen satellites, SpaceX could match an entire year’s worth of new Starlink capacity with just two fully loaded Starship flights. Starship will be able to deliver 60 times more Starlink capacity to orbit than a cluster of satellites riding on a Falcon 9.

There’s no reason to believe SpaceX will be satisfied with simply keeping pace with today’s Starlink growth rate. There are emerging market opportunities in connecting satellites with smartphones, space-based computer processing and data storage, and military applications.

Other companies have medium-to-heavy rockets that are either new to the market or soon to debut. These include Blue Origin’s New Glenn, now set to make its second test flight in the coming days, with a reusable booster designed to facilitate a rapid-fire launch cadence.

Despite all of the newcomers, most satellite operators see a shortage of launch capacity on the commercial market. “The industry is likely to remain supply-constrained through the balance of the decade,” wrote Caleb Henry, director of research at the industry analysis firm Quilty Space. “That could pose a problem for some of the many large constellations on the horizon.”

United Launch Alliance’s Vulcan rocket, Rocket Lab’s Neutron, Stoke Space’s Nova, Relativity Space’s Terran R, and Firefly Aerospace and Northrop Grumman’s Eclipse are among the other rockets vying for a bite at the launch apple.

“Whether or not the market can support six medium to heavy lift launch providers from the US aloneplus Starshipis an open question, but for the remainder of the decade launch demand is likely to remain high, presenting an opportunity for one or more new players to establish themselves in the pecking order,” Henry wrote in a post on Quilty’s website.

China’s space program will need more rockets, too. That nation’s two megaconstellations, known as Guowang and Qianfan, will have thousands of satellites requiring a significant uptick on Chinese launches.

Taking all of this into account, the demand curve for access to space is sure to continue its upward trajectory. How companies meet this demand, and with how many discrete departures from Earth, isn’t quite as clear.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With another record broken, the world’s busiest spaceport keeps getting busier Read More »

neutron-rocket’s-debut-slips-into-mid-2026-as-company-seeks-success-from-the-start

Neutron rocket’s debut slips into mid-2026 as company seeks success from the start

During an earnings call on Monday, Rocket Lab chief executive Peter Beck announced that the company’s medium-lift launch vehicle, Neutron, would not launch this year.

For anyone with the slightest understanding of the challenges involved in bringing a new rocket to the launch pad, as well as a calendar, the delay does not come as a surprise. Although Rocket Lab had been holding onto the possibility of launching Neutron this year publicly, it has been clear for months that a slip into 2026 was inevitable.

According to Beck, speaking during a third-quarter 2025 earnings call, the new timeline has the company bringing Neutron to Launch Complex 2 at Wallops Flight Facility in Virginia during the first quarter of next year. The first launch is scheduled to occur “thereafter,” according to the company’s plans.

The Rocket Lab way

As part of his remarks, Beck said Rocket Lab would not be rushed by an arbitrary deadline.

“We’ve seen what happens when others rush to the pad with an unproven product, and we just refused to do that,” he said, referring to other commercial launch companies that have not had success with their first launches. “Our aim is to make it to orbit on the first try. You won’t see us using some qualifier about us just clearing the pad, and claiming success and whatnot, and that means that we don’t want to learn something during Neutron’s first flight that could be learned on the ground during the testing phase.”

Through the development of the smaller Electron rocket as well as various satellites and in-space vehicles, Rocket Lab has followed and honed a process that breeds success in flight, Beck said. Right now, Rocket Lab is in a “meaty” testing process when components of the vehicle are being assembled for the first time, Beck added.

Rocket Lab has reached the “meaty” part of the testing process.

Credit: Rocket Lab

Rocket Lab has reached the “meaty” part of the testing process. Credit: Rocket Lab

“This is a time when you find out on the ground what you got right, and what you got wrong, rather than finding out that during first launch,” he said. “Now at Rocket Lab, we have a proven process for delivering and developing complex space flight hardware, and I think that process speaks for itself with respect to our hardware, always looking beautiful, and, more importantly, always working beautifully. Now, our process is meticulous, but it works.”

Neutron rocket’s debut slips into mid-2026 as company seeks success from the start Read More »

intuitive-machines—known-for-its-moon-landers—will-become-a-military-contractor

Intuitive Machines—known for its Moon landers—will become a military contractor

The company’s success in just reaching the Moon’s surface has put it in position to become one of NASA’s leading lunar contractors. NASA has awarded more robotic lunar lander contracts to Intuitive Machines than to any other company, with two missions complete and at least two more in development. Intuitive Machines is also one of the companies NASA selected to compete for a contract to develop an unpressurized Moon buggy for astronauts to drive across the lunar surface.

Branching out

The addition of Lanteris will make Intuitive Machines competitive for work outside of the lunar realm.

“This marks the moment Intuitive Machines transitions from a lunar company to a multi-domain space prime, setting the pace for how the industry’s next generation will operate,” said Steve Altemus, the company’s CEO.

Altemus said Lanteris will initially become a subsidiary of Intuitive Machines, followed by a complete integration under the Intuitive Machines banner.

Lanteris builds numerous satellites for the US Space Force, NASA, and commercial customers. The company can trace its history to 1957, when it was established as the Western Development Laboratories division of Philco Corporation, a battery and electronics manufacturer founded in 1892.

Philco constructed a satellite factory in Palo Alto, California, and produced its first spacecraft for launch in 1960. The satellite, named Courier 1B, made history as the world’s first active repeater communications relay station in orbit, meaning it could receive messages from the ground, store them, and then retransmit them.

The contractor underwent numerous mergers and acquisitions, becoming part of Ford Motor Company, Loral Corporation, and the Canadian company MDA Space before it was bought up by Advent more than two years ago. In nearly 70 years, the company has produced more than 300 satellites, many of them multi-ton platforms for broadcasting television signals from geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. Lanteris has contracts to build dozens more satellites in the next few years.

Intuitive Machines—known for its Moon landers—will become a military contractor Read More »

nasa-is-kind-of-a-mess:-here-are-the-top-priorities-for-a-new-administrator

NASA is kind of a mess: Here are the top priorities for a new administrator


“He inevitably will have to make tough calls.”

Jared Isaacman, right, led the crew of Polaris Dawn, which performed the first private spacewalk. Credit: Polaris Dawn

Jared Isaacman, right, led the crew of Polaris Dawn, which performed the first private spacewalk. Credit: Polaris Dawn

After a long summer and fall of uncertainty, private astronaut Jared Isaacman has been renominated to lead NASA, and there appears to be momentum behind getting him confirmed quickly as the space agency’s 15th administrator. It is possible, although far from a lock, the Senate could finalize his nomination before the end of this year.

It cannot happen soon enough.

The National Aeronautics and Space Administration is, to put it bluntly, kind of a mess. This is not meant to disparage the many fine people who work at NASA. But years of neglect, changing priorities, mismanagement, creeping bureaucracy, meeting bloat, and other factors have taken their toll. NASA is still capable of doing great things. It still inspires. But it needs a fresh start.

“Jared has already garnered tremendous support from nearly everyone in the space community,” said Lori Garver, who served as NASA’s deputy administrator under President Obama. “This should give him a tail wind as he inevitably will have to make tough calls.”

Garver worked for a Democratic administration, and it’s notable that Isaacman has admirers from across the political spectrum, from left-leaning space advocates to right-wing influencers. A decade and a half ago, Garver led efforts to get NASA to more fully embrace commercial space. In some ways, Isaacman will seek to further this legacy, and Garver knows all too well how difficult it is to change the sprawling space agency and beat back entrenched contractors.

“Expectations are high, yet the challenge of marrying outsized goals to greatly reduced budget guidance from his administration remains,” Garver said. “It will be difficult to deliver on accelerating Artemis, transitioning to commercial LEO destinations, starting a serious nuclear electric propulsion program for Mars transportation, and attracting non-government funding for science missions. He’s coming in with a lot of support, which he will need in the current divisive political environment.”

Here’s a rundown of some of the challenges Isaacman must overcome to be a successful administrator.

A shrunken NASA

At the beginning of this year, the civil servant workforce at the space agency numbered about 18,000 people. NASA said that about 3,870 employees exited this year under various deferred resignation, early retirement, or buyout programs. After subtracting another 500 employees who left through normal attrition, NASA’s headcount will be down by 20 to 25 percent by the end of this year.

The question is how impactful these losses are. A number of the departures were from senior positions, leaving important divisions—such as Astrophysics—with acting directors and interim people in key positions. Some people who left were nearing retirement, and this may ultimately benefit the space agency by allowing younger people to bring new energy to the mission.

Yet there are very real concerns about NASA’s ability to retain its best people. As the commercial space industry grows around some of its key centers, including Alabama, Florida, and Texas, these companies cherry-pick the best NASA engineers by offering higher salaries and stock options. These engineers, in turn, know who to hire at the local field centers who are most promising.

This brain drain diminishes the engineering excellence at NASA. Can Isaacman do more with less?

Very low morale

Isaacman also arrives after what has essentially been a lost year for NASA.

Imagine you’re a NASA employee. You came to the agency to lead exploration of the Solar System and beyond. Then the second Trump administration shows up and demands widespread workforce cuts. The White House subsequently also proposes a 25 percent hit to the space agency’s budget and draconian cuts for NASA’s science programs.

Then, to cap off the spring of 2025, Isaacman’s nomination was pulled for purely political reasons. Not everyone at NASA liked Isaacman. There was genuine concern that he would shake things up and rattle cages. But Isaacman was also perceived as young, dynamic, and well-liked by the broader space community. He genuinely wanted to see NASA succeed. And then—poof—he’s gone. This only exacerbated uncertainty about the agency’s future.

Interim NASA Administrator Sean Duffy provides remarks at a briefing prior to the Crew 11 launch in August.

Credit: NASA

Interim NASA Administrator Sean Duffy provides remarks at a briefing prior to the Crew 11 launch in August. Credit: NASA

Isaacman’s de-nomination was followed by the appointment of Sean Duffy, a former reality TV star serving as the Secretary of Transportation, to lead NASA on an interim basis. Duffy was a wild card, but it soon became clear he saw NASA as a vehicle to further his political career. And even if Duffy had been focused on solutions, he knew little about space and already had a full-time job leading the Department of Transportation. NASA employees are not fools. They saw this and understood this move’s implications.

Finally, in a coup de grâce, the government shut down on October 1. The majority of NASA’s civil servant workforce has been sitting at home for six weeks, not getting paid, not exploring, and wondering just what the hell they’re doing working for NASA.

Arte-miss?

As NASA has struggled this year, China has made demonstrable progress in its lunar program. It is now probable that China’s Lanyue lander will put humans on the lunar surface by or before the year 2030, likely beating NASA in its return to the Moon with the Artemis Program.

NASA’s lunar program was created during the first Trump administration, but then NASA leader Jim Bridenstine was unable to secure enough funding (remember the whole Pell Grant fiasco?) before he left office in early 2021. This left NASA without the resources it needed to build a management team to lead the program and support key elements, including a lander and lunar spacesuits.

These problems more or less persisted under President Joe Biden and his NASA Administrator, Bill Nelson. From 2021 to 2024, the leaders of NASA essentially said everything was fine and that a lunar landing by 2026 was on track. When reporters, including myself, would ask the leaders of the Artemis Program, we were effectively shouted down.

For example, in January 2024, I pressed NASA’s chief of deep space exploration, Jim Free, about the non-viability of a 2026 human landing date.

“It’s interesting because we have 11 people in industry on here that have signed contracts to meet those dates,” Free replied during a teleconference, which included representatives from SpaceX, Axiom, and the other companies. “So from my perspective, the people in industry are here today saying we support it. We’ve signed contracts to those dates on the government side based on the technical details that they’ve given us, that our technical teams have come forward with.”

A shorter version of that might be: “Shut up, we know what we’re doing.”

NASA has already delayed the lunar landing officially to 2027. And no one believes that date is real. One of Isaacman’s first jobs will be to conduct an honest assessment of where the Artemis Program truly is and to rapidly take steps to get it on track. I think we can be confident he will do so with eyes wide open.

Human Landing System

So what will he do about this? The biggest challenge involves the Human Landing System (HLS), a necessary component to get humans to the surface from lunar orbit and back.

Ars explored how NASA found itself in this predicament in a long article published in early October. As for what to do now, NASA basically has two realistic options going forward. It can light a fire under SpaceX to prioritize the HLS component of its Starship program, and possibly adopt a simplified architecture. Or it can work with Blue Origin to develop to a human system using its Blue Moon Mk. 1 lander (originally intended for cargo) and a modified Mk. 1 lander for ascent purposes. (Blue says it is game). Beyond that, there is no hardware in work that could possibly accommodate a landing before 2030.

Duffy initially blustered about American capabilities. Repeatedly, he said, “We are going to beat the Chinese to the Moon.” It sounded good, but it underlined his inexperience with spaceflight because it was just not true.

Less than a month ago, Duffy changed his tune. He blamed SpaceX and its Starship vehicle for delays to Artemis, and he said he was “opening up” the lander competition. The problem is that Duffy’s solution was to raise the prospect of a “government option” lunar lander. He had been having discussions with Lockheed Martin, Northrop Grumman, and others about the possibility of issuing a cost-plus contract to build a smaller lunar lander in 30 months.

An artist’s illustration of multiple Starships on the lunar surface, with a Moon base in the background.

Credit: SpaceX

An artist’s illustration of multiple Starships on the lunar surface, with a Moon base in the background. Credit: SpaceX

Duffy should have known that this timeline was completely unrealistic. Moreover, a rapidly built lunar lander (think five years, at a bare minimum) would likely cost on the order of $20 billion, which NASA did not have. But no one in his inner circle, including Amit Kshatriya, NASA’s associate administrator, was telling him that. They were encouraging him.

Isaacman is not going to be snowed under by this kind of (preposterous) proposal. Most likely, he will push SpaceX to prioritize HLS and be eager to work with Blue Origin to develop a human lander based on Mk. 1 technology.

His first call as administrator may well be to Blue Origin founder Jeff Bezos.

Commercial LEO Destinations

Another looming problem involves commercial space stations in low-Earth orbit, which are supposed to be flying before the end of 2030 when the International Space Station is due to be retired.

There is much uncertainty over whether the primary companies involved in this effort—be it for financial, technical, regulatory, or other reasons—will be able to launch and test space stations by 2030 in order to allow NASA to maintain a continuous presence in low-Earth orbit. The main contractors are Axiom Space, Voyager Technologies, Blue Origin, and Vast Space.

This is one area in which Duffy took action. In August, he signed a document that implemented major changes to the Commercial LEO Destinations program. One of the biggest shifts was a lowering of the minimum requirements. Instead of fully operational stations, the new directive required only the capability to support four astronauts for 1-month increments in low-Earth orbit.

However, it is unclear that Duffy fully understood what he was signing, because there was an immediate pushback. Moreover, prior to the government shutdown, there was a lot of discussion about ripping up the directive and reverting to the old rules for commercial space stations. Everyone in the industry is scratching their heads about what comes next.

In the meantime, the space station companies are trying to raise funds, design stations for uncertain requirements, and prepare for competition for the next phase of NASA awards. This program needs more funding, clarity, and urgency for it to be successful.

Earth science

In recent days, there has been some excellent reporting about the fate of Earth science at NASA, which is part of the space agency’s core mission. Space.com published a long feature article about the Trump administration’s efforts to undermine Maryland’s Goddard Space Flight Center, which is NASA’s oldest field center.

Goddard houses the largest Earth science workforce at the agency, and its study of climate change is at odds with the policy positions of the Trump administration and many members of a Republican-controlled Congress. The result has been steep funding cuts, canceled missions, and closed buildings.

One of Isaacman’s most challenging jobs will be to balance support for Earth science while also placating an administration that frankly does not want to publish reports about how human activity is warming the planet.

In remarks on the social media site X, Isaacman recently said he wanted to expand commercial partnerships to science missions. “Better to have 10 x $100 million missions and a few fail than a single overdue and costly $1B+ mission,” he wrote. Isaacman said NASA should also buy more Earth data from providers like Planet and BlackSky, which already have satellites in orbit.

“Why build bespoke satellites at greater cost and delay when you could pay for the data as needed from existing providers?” he asked.

Planetary science

Another area of concern is planetary science. When one picks apart Trump’s budget priorities, there are two clear and disturbing trends.

The first is that there are no significant planetary science missions in the pipeline after the ambitious Dragonfly mission, which is scheduled to launch to Titan in July 2028. It becomes difficult to escape the reality that this administration is not prioritizing any mission that launches after Trump leaves office in January 2029. As a result, after Dragonfly, the planetary pipeline is running low.

Another major concern is the fate of the famed Jet Propulsion Laboratory in California. The lab laid off 550 people last month, which followed previous cuts. The center director, Laurie Leshin, stepped down on June 1. With the Mars Sample Return mission on hold, and quite possibly canceled, the future of NASA’s premier planetary science mission center is cloudy.

A view of the control room at NASA’s Jet Propulsion Laboratory in California.

Credit: NASA

A view of the control room at NASA’s Jet Propulsion Laboratory in California. Credit: NASA

Isaacman has said he has never “remotely suggested” that NASA could do without the Jet Propulsion Laboratory.

“Personally, I have publicly defended programs like the Chandra X-ray Observatory, offered to fund a Hubble reboost mission, and anything suggesting that I am anti-science or want to outsource that responsibility is simply untrue,” he wrote on X.

That is likely true, but charting a bright course for the future of planetary science, on a limited budget, will be a major challenge for the new administrator.

New initiatives

All of the above concerns NASA’s existing challenges. But Isaacman will certainly want to make his own mark. This is likely to involve a spaceflight technology he considers to be the missing link in charting a course for humans to explore the Solar System beyond the Moon: nuclear electric propulsion.

As he explained to Ars earlier this year, Isaacman’s signature issue was going to be a full-bore push into nuclear electric propulsion.

“We would have gone right to a 100-kilowatt test vehicle that we would send somewhere inspiring with some great cameras,” he said. “Then we are going right to megawatt class, inside of four years, something you could dock a human-rated spaceship to, or drag a telescope to a Lagrange point and then return, big stuff like that. The goal was to get America underway in space on nuclear power.”

Another key element of this plan is that it would give some of NASA’s field centers, including Marshall Space Flight Center, important work to do after the seemingly inevitable cancellation of the Space Launch System rocket.

Standing up new programs, and battling against existing programs that have strong backing in Congress and industry, will require all of the diplomatic skill and force of personality Isaacman can muster.

We will soon find out if he has the right stuff.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

NASA is kind of a mess: Here are the top priorities for a new administrator Read More »

here’s-how-orbital-dynamics-wizardry-helped-save-nasa’s-next-mars-mission

Here’s how orbital dynamics wizardry helped save NASA’s next Mars mission


Blue Origin is counting down to launch of its second New Glenn rocket Sunday.

The New Glenn rocket rolls to Launch Complex-36 in preparation for liftoff this weekend. Credit: Blue Origin

CAPE CANAVERAL, FloridaThe field of astrodynamics isn’t a magical discipline, but sometimes it seems trajectory analysts can pull a solution out of a hat.

That’s what it took to save NASA’s ESCAPADE mission from a lengthy delay, and possible cancellation, after its rocket wasn’t ready to send it toward Mars during its appointed launch window last year. ESCAPADE, short for Escape and Plasma Acceleration and Dynamics Explorers, consists of two identical spacecraft setting off for the red planet as soon as Sunday with a launch aboard Blue Origin’s massive New Glenn rocket.

“ESCAPADE is pursuing a very unusual trajectory in getting to Mars,” said Rob Lillis, the mission’s principal investigator from the University of California, Berkeley. “We’re launching outside the typical Hohmann transfer windows, which occur every 25 or 26 months. We are using a very flexible mission design approach where we go into a loiter orbit around Earth in order to sort of wait until Earth and Mars are lined up correctly in November of next year to go to Mars.”

This wasn’t the original plan. When it was first designed, ESCAPADE was supposed to take a direct course from Earth to Mars, a transit that typically takes six to nine months. But ESCAPADE will now depart the Earth when Mars is more than 220 million miles away, on the opposite side of the Solar System.

The payload fairing of Blue Origin’s New Glenn rocket, containing NASA’s two Mars-bound science probes. Credit: Blue Origin

The most recent Mars launch window was last year, and the next one doesn’t come until the end of 2026. The planets are not currently in alignment, and the proverbial stars didn’t align to get the ESCAPADE satellites and their New Glenn rocket to the launch pad until this weekend.

This is fine

But there are several reasons this is perfectly OK to NASA. The New Glenn rocket is overkill for this mission. The two-stage launcher could send many tons of cargo to Mars, but NASA is only asking it to dispatch about a ton of payload, comprising a pair of identical science probes designed to study how the planet’s upper atmosphere interacts with the solar wind.

But NASA got a good deal from Blue Origin. The space agency is paying Jeff Bezos’ space company about $20 million for the launch, less than it would for a dedicated launch on any other rocket capable of sending the ESCAPADE mission to Mars. In exchange, NASA is accepting a greater than usual chance of a launch failure. This is, after all, just the second flight of the 321-foot-tall (98-meter) New Glenn rocket, which hasn’t yet been certified by NASA or the US Space Force.

The ESCAPADE mission, itself, was developed with a modest budget, at least by the standards of interplanetary exploration. The mission’s total cost amounts to less than $80 million, an order of magnitude lower than all of NASA’s recent Mars missions. NASA officials would not entrust the second flight of the New Glenn rocket to launch a billion-dollar spacecraft, but the risk calculation changes as costs go down.

NASA knew all of this in 2023 when it signed a launch contract with Blue Origin for the ESCAPADE mission. What officials didn’t know was that the New Glenn rocket wouldn’t be ready to fly when ESCAPADE needed to launch in late 2024. It turned out Blue Origin didn’t launch the first New Glenn test flight until January of this year. It was a success. It took another 10 months for engineers to get the second New Glenn vehicle to the launch pad.

The twin ESCAPADE spacecraft undergoing final preparations for launch. Each spacecraft is about a half-ton fully fueled. Credit: NASA/Kim Shiflett

Aiming high

That’s where the rocket sits this weekend at Cape Canaveral Space Force Station, Florida. If all goes according to plan, New Glenn will take off Sunday afternoon during an 88-minute launch window opening at 2: 45 pm EST (19: 45 UTC). There is a 65 percent chance of favorable weather, according to Blue Origin.

Blue Origin’s launch team, led by launch director Megan Lewis, will oversee the countdown Sunday. The rocket will be filled with super-cold liquid methane and liquid oxygen propellants beginning about four-and-a-half hours prior to liftoff. After some final technical and weather checks, the terminal countdown sequence will commence at T-minus 4 minutes, culminating in ignition of the rocket’s seven BE-4 main engines at T-minus 5.6 seconds.

The rocket’s flight computer will assess the health of each of the powerful engines, combining to generate more than 3.8 million pounds of thrust. If all looks good, hold-down restraints will release to allow the New Glenn rocket to begin its ascent from Florida’s Space Coast.

Heading east, the rocket will surpass the speed of sound in a little over a minute. After soaring through the stratosphere, New Glenn will shut down its seven booster engines and shed its first stage a little more than 3 minutes into the flight. Twin BE-3U engines, burning liquid hydrogen, will ignite to finish the job of sending the ESCAPADE satellites toward deep space. The rocket’s trajectory will send the satellites toward a gravitationally-stable location beyond the Moon, called the L2 Lagrange point, where it will swing into a loosely-bound loiter orbit to wait for the right time to head for Mars.

Meanwhile, the New Glenn booster, itself measuring nearly 20 stories tall, will begin maneuvers to head toward Blue Origin’s recovery ship floating a few hundred miles downrange in the Atlantic Ocean. The final part of the descent will include a landing burn using three of the BE-4 engines, then downshifting to a single engine to control the booster’s touchdown on the landing platform, dubbed “Jacklyn” in honor of Bezos’ late mother.

The launch timeline for New Glenn’s second mission. Credit: Blue Origin

New Glenn’s inaugural launch at the start of this year was a success, but the booster’s descent did not go well. The rocket was unable to restart its engines, and it crashed into the sea.

“We’ve incorporated a number of changes to our propellant management system, some minor hardware changes as well, to increase our likelihood of landing that booster on this mission,” said Laura Maginnis, Blue Origin’s vice president of New Glenn mission management. “That was the primary schedule driver that kind of took us from from January to where we are today.”

Blue Origin officials are hopeful they can land the booster this time. The company’s optimism is enough for officials to have penciled in a reflight of this particular booster on the very next New Glenn launch, slated for the early months of next year. That launch is due to send Blue Origin’s first Blue Moon cargo lander to the Moon.

“Our No. 1 objective is to deliver ESCAPADE safely and successfully on its way to L2, and then eventually on to Mars,” Maginnis said in a press conference Saturday. “We also are planning and wanting to land our booster. If we don’t land the booster, that’s OK. We have several more vehicles in production. We’re excited to see how the mission plays out tomorrow.”

Tracing a kidney bean

ESCAPADE’s path through space, relative to the Earth, has the peculiar shape of a kidney bean. In the world of astrodynamics, this is called a staging or libration orbit. It’s a way to keep the spacecraft on a stable trajectory to wait for the opportunity to go to Mars late next year.

“ESCAPADE has identified that this is the way that we want to fly, so we launch from Earth onto this kidney bean-shaped orbit,” said Jeff Parker, a mission designer from the Colorado-based company Advanced Space. “So, we can launch on virtually any day. What happens is that kidney bean just grows and shrinks based on how much time you need to spend in that orbit. So, we traverse that kidney been and at the very end there’s a final little loop-the-loop that brings us down to Earth.”

That’s when the two ESCAPADE spacecraft, known as Blue and Gold, will pass a few hundred miles above our planet. At the right moment, on November 7 and 9 of next year, the satellites will fire their engines to set off for Mars.

An illustration of ESCAPADE’s trajectory to wait for the opportunity to go to Mars. Credit: UC-Berkeley

There are some tradeoffs with this unique staging orbit. It is riskier than the original plan of sending ESCAPADE straight to Mars. The satellites will be exposed to more radiation, and will consume more of their fuel just to get to the red planet, eating into reserves originally set aside for science observations.

The satellites were built by Rocket Lab, which designed them with extra propulsion capacity in order to accommodate launches on a variety of different rockets. In the end, NASA “judged that the risk for the mission was acceptable, but it certainly is higher risk,” said Richard French, Rocket Lab’s vice president of business development and strategy.

The upside of the tradeoff is it will demonstrate an “exciting and flexible way to get to Mars,” Lillis said. “In the future, if we’d like to send hundreds of spacecraft to Mars at once, it will be difficult to do that from just the launch pads we have on Earth within that month [of the interplanetary launch window]. We could potentially queue up spacecraft using the approach that ESCAPADE is pioneering.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s how orbital dynamics wizardry helped save NASA’s next Mars mission Read More »

blue-origin-will-‘move-heaven-and-earth’-to-help-nasa-reach-the-moon-faster,-ceo-says

Blue Origin will ‘move heaven and Earth’ to help NASA reach the Moon faster, CEO says

Blue Origin stands ready to help NASA achieve its goals with regard to landing humans on the Moon as soon as possible, the company’s chief executive said Saturday in an interview with Ars.

“We just want to help the US get to the Moon,” said Dave Limp, CEO of the space company founded by Jeff Bezos. “If NASA wants to go quicker, we would move heaven and Earth, pun intended, to try to get to the Moon sooner. And I think we have some good ideas.”

Limp spoke on Saturday, about 24 hours ahead of the company’s second launch of the large New Glenn rocket. Carrying the ESCAPADE spacecraft for NASA, the mission has a launch window that opens at 2: 45 pm ET (19: 45 UTC) at Cape Canaveral Space Force Station in Florida, and runs for a little more than two hours.

NASA seeks a faster return

This year it has become increasingly apparent that, should NASA stick to its present plans for the Artemis III lunar landing mission, China is on course to beat the United States back to the Moon with humans. In recognition of this, about three weeks ago, NASA acting administrator Sean Duffy said the space agency was reopening the competition for a human lander.

SpaceX and Blue Origin both have existing contracts for human landers, but the government has asked each providers for an option to accelerate their timeline. NASA currently has a target landing date of 2027, but that is unrealistic using the present approach of SpaceX’s Starship or Blue Origin’s large Mk. 2 lander.

Ars exclusively reported in early October that Blue Origin had begun work on a faster architecture, involving multiple versions of its Mk. 1 cargo lander as well as a modified version of this vehicle tentatively called Mk 1.5. Limp said that after Duffy asked for revised proposals, Blue Origin responded almost immediately.

“We’ve sent our initial summary of that over, and we have a full report of that due here shortly,” he said. “I’m not going to go into the details because I think that’s probably for NASA to talk about, not us, but we have some ideas that we think could accelerate the path to the Moon. And I hope NASA takes a close look.”

Blue Origin will ‘move heaven and Earth’ to help NASA reach the Moon faster, CEO says Read More »

the-government-shutdown-is-starting-to-have-cosmic-consequences

The government shutdown is starting to have cosmic consequences

The federal government shutdown, now in its 38th day, prompted the Federal Aviation Administration to issue a temporary emergency order Thursday prohibiting commercial rocket launches from occurring during “peak hours” of air traffic.

The FAA also directed commercial airlines to reduce domestic flights from 40 “high impact airports” across the country in a phased approach beginning Friday. The agency said the order from the FAA’s administrator, Bryan Bedford, is aimed at addressing “safety risks and delays presented by air traffic controller staffing constraints caused by the continued lapse in appropriations.”

The government considers air traffic controllers essential workers, so they remain on the job without pay until Congress passes a federal budget and President Donald Trump signs it into law. The shutdown’s effects, which affected federal workers most severely at first, are now rippling across the broader economy.

Sharing the airspace

Vehicles traveling to and from space share the skies with aircraft, requiring close coordination with air traffic controllers to clear airspace for rocket launches and reentries. The FAA said its order restricting commercial air traffic, launches, and reentries is intended to “ensure the safety of aircraft and the efficiency of the [National Airspace System].”

In a statement explaining the order, the FAA said the air traffic control system is “stressed” due to the shutdown.

“With continued delays and unpredictable staffing shortages, which are driving fatigue, risk is further increasing, and the FAA is concerned with the system’s ability to maintain the current volume of operations,” the regulator said. “Accordingly, the FAA has determined additional mitigation is necessary.”

Beginning Monday, the FAA said commercial space launches will only be permitted between 10 pm and 6 am local time, when the national airspace is most calm. The order restricts commercial reentries to the same overnight timeframe. The FAA licenses all commercial launches and reentries.

The government shutdown is starting to have cosmic consequences Read More »

rocket-report:-canada-invests-in-sovereign-launch;-india-flexes-rocket-muscles

Rocket Report: Canada invests in sovereign launch; India flexes rocket muscles


Europe’s Ariane 6 rocket gave an environmental monitoring satellite a perfect ride to space.

Rahul Goel, the CEO of Canadian launch startup NordSpace, poses with a suborbital demo rocket and members of his team in Toronto earlier this year. Credit: Andrew Francis Wallace/Toronto Star via Getty Images

Welcome to Edition 8.18 of the Rocket Report! NASA is getting a heck of a deal from Blue Origin for launching the agency’s ESCAPADE mission to Mars. Blue Origin is charging NASA about $20 million for the launch on the company’s heavy-lift New Glenn rocket. A dedicated ride on any other rocket capable of the job would undoubtedly cost more.

But there are trade-offs. First, there’s the question of risk. The New Glenn rocket is only making its second flight, and it hasn’t been certified by NASA or the US Space Force. Second, the schedule for ESCAPADE’s launch has been at the whim of Blue Origin, which has delayed the mission several times due to issues developing New Glenn. NASA’s interplanetary missions typically have a fixed launch period, and the agency pays providers like SpaceX and United Launch Alliance a premium to ensure the launch happens when it needs to happen.

New Glenn is ready, the satellites are ready, and Blue Origin has set a launch date for Sunday, November 9. The mission will depart Earth outside of the usual interplanetary launch window, so orbital dynamics wizards came up with a unique trajectory that will get the satellites to Mars in 2027.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Canadian government backs launcher development. The federal budget released by the Liberal Party-led government of Canada this week includes a raft of new defense initiatives, including 182.6 million Canadian dollars ($129.4 million) for sovereign space launch capability, SpaceQ reports. The new funding is meant to “establish a sovereign space launch capability” with funds available this fiscal year and spent over three years. How the money will be spent and on what has yet to be released. As anticipated, Canada will have a new Defense Investment Agency (DIA) to oversee defense procurement. Overall, the government outlined 81.8 billion Canadian dollars ($58 billion) over five years for the Canadian Armed Forces. The Department of National Defense will manage the government’s cash infusion for sovereign launch capability.

Kick-starting an industry … Canada joins a growing list of nations pursuing homegrown launchers as many governments see access to space as key to national security and an opportunity for economic growth. International governments don’t want to be beholden to a small number of foreign launch providers from established space powers. That’s why startups in Germany, the United Kingdom, South Korea, and Australia are making a play in the launch arena, often with government support. A handful of Canadian startups, such as Maritime Launch Services, Reaction Dynamics, and NordSpace, are working on commercial satellite launchers. The Canadian government’s announcement came days after MDA Space, the largest established space company in Canada, announced its own multimillion-dollar investment in Maritime Launch Services.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Money alone won’t solve Europe’s space access woes. Increasing tensions with Russia have prompted defense spending boosts throughout Europe that will benefit fledgling smallsat launcher companies across the continent. But Europe is still years away from meeting its own space access needs, Space News reports. Space News spoke with industry analysts from two European consulting firms. They concluded that a lack of experience, not a deficit of money, is holding European launch startups back. None of the new crop of European rocket companies have completed a successful orbital flight.

Swimming in cash … The German company Isar Aerospace has raised approximately $600 million, the most funding of any of the European launch startups. Isar is also the only one of the bunch to make an orbital launch attempt. Its Spectrum rocket failed less than 30 seconds after liftoff last March, and a second launch is expected next year. Isar has attracted more investment than Rocket Lab, Firefly Aerospace, and Astra collectively raised on the private market before each of them successfully launched a rocket into orbit. In addition to Isar, several other European companies have raised more than $100 million on the road to developing a small satellite launcher. (submitted by EllPeaTea)

Successful ICBM test from Vandenberg. Air Force Global Strike Command tested an unarmed Minuteman III intercontinental ballistic missile in the predawn hours of Wednesday, Air and Space Forces Magazine reports. The test, the latest in a series of launches that have been carried out at regular intervals for decades, came as Russian President Vladimir Putin has touted the development of two new nuclear weapons and President Donald Trump has suggested in recent days that the US might resume nuclear testing. The ICBM launched from an underground silo at Vandenberg Space Force Base, California, and traveled some 4,200 miles to a test range in the Pacific Ocean after receiving launch orders from an airborne nuclear command-and-control plane.

Rehearsing for the unthinkable … The test, known as Glory Trip 254 (GT 254), provided a “comprehensive assessment” of the Minuteman III’s readiness to launch at a moment’s notice, according to the Air Force. “The data collected during the test is invaluable in ensuring the continued reliability and accuracy of the ICBM weapon system,” said Lt. Col. Karrie Wray, commander of the 576th Flight Test Squadron. For Minuteman III tests, the Air Force pulls its missiles from the fleet of some 400 operational ICBMs. This week’s test used one from F.E. Warren Air Force Base, Wyoming, and the missile was equipped with a single unarmed reentry vehicle that carried telemetry instrumentation instead of a warhead, service officials said. (submitted by EllPeaTea)

One crew launches, another may be stranded. Three astronauts launched to China’s Tiangong space station on October 31 and arrived at the outpost a few hours later, extending the station’s four-year streak of continuous crew operations. The Shenzhou 21 crew spacecraft lifted off on a Chinese Long March 2F rocket from the Jiuquan space center in the Gobi Desert. Shenzhou 21 is supposed to replace a three-man crew that has been on the Tiangong station since April, but China’s Manned Space Agency announced Tuesday the outgoing crew’s return craft may have been damaged by space junk, Ars reports.

Few details … Chinese officials said the Shenzhou 20 spacecraft will remain at the station while engineers investigate the potential damage. As of Thursday, China has not set a new landing date or declared whether the spacecraft is safe to return to Earth at all. “The Shenzhou 20 manned spacecraft is suspected of being impacted by small space debris,” Chinese officials wrote on social media. “Impact analysis and risk assessment are underway. To ensure the safety and health of the astronauts and the complete success of the mission, it has been decided that the Shenzhou 20 return mission, originally scheduled for November 5, will be postponed.” In the event Shenzhou 20 is unsafe to return, China could launch a rescue craft—Shenzhou 22—already on standby at the Jiuquan space center.

Falcon 9 rideshare boosts Vast ambitions. A pathfinder mission for Vast’s privately owned space station launched into orbit Sunday and promptly extended its solar panel, kicking off a shakedown cruise to prove the company’s designs can meet the demands of spaceflight, Ars reports. Vast’s Haven Demo mission lifted off just after midnight Sunday from Cape Canaveral Space Force Station, Florida, and rode a SpaceX Falcon 9 rocket into orbit. Haven Demo was one of 18 satellites sharing a ride on SpaceX’s Bandwagon 4 mission, launching alongside a South Korean spy satellite and a small testbed for Starcloud, a startup working with Nvidia to build an orbital data center.

Subscale testing … After release from the Falcon 9, the half-ton Haven Demo spacecraft stabilized itself and extended its power-generating solar array. The satellite captured 4K video of the solar array deployment, and Vast shared the beauty shot on social media. “Haven Demo’s mission success has turned us into a proven spacecraft company,” Vast’s CEO, Max Haot, posted on X. “The next step will be to become an actual commercial space station company next year. Something no one has achieved yet.” Vast plans to launch its first human-rated habitat, named Haven-1, into low-Earth orbit in 2026. Haven Demo lacks crew accommodations but carries several systems that are “architecturally similar” to Haven-1, according to Vast. For example, Haven-1 will have 12 solar arrays, each identical to the single array on Haven Demo. The pathfinder mission uses a subset of Haven-1’s propulsion system, but with identical thrusters, valves, and tanks.

Lights out at Vostochny. One of Russia’s most important projects over the last 15 years has been the construction of the Vostochny spaceport as the country seeks to fly its rockets from native soil and modernize its launch operations. Progress has been slow as corruption clouded Vostochny’s development. Now, the primary contractor building the spaceport, the Kazan Open Stock Company (PSO Kazan), has failed to pay its bills, Ars reports. The story, first reported by the Moscow Times, says that the energy company supplying Vostochny cut off electricity to areas of the spaceport still under construction after PSO Kazan racked up $627,000 in unpaid energy charges. The electricity company did so, it said, “to protect the interests of the region’s energy system.”

A dark reputation … Officials at the government-owned spaceport said PSO Kazan would repay its debt by the end of November, but the local energy company said it intends to file a lawsuit against KSO Kazan to declare the entity bankrupt. The two operational launch pads at Vostochny are apparently not affected by the power cuts. Vostochny has been a fiasco from the start. After construction began in 2011, the project was beset by hunger strikes, claims of unpaid workers, and the theft of $126 million. Additionally, a man driving a diamond-encrusted Mercedes was arrested after embezzling $75,000. Five years ago, there was another purge of top officials after another round of corruption.

Ariane 6 delivers for Europe again. European launch services provider Arianespace has successfully launched the Sentinel 1D Earth observation satellite aboard an Ariane 62 rocket for the European Commission, European Spaceflight reports. Launched in its two-booster configuration, the Ariane 6 rocket lifted off from the Guiana Space Center in South America on Tuesday. Approximately 34 minutes after liftoff, the satellite was deployed from the rocket’s upper stage into a Sun-synchronous orbit at an altitude of 693 kilometers (430 miles). Sentinel 1D is the newest spacecraft to join Europe’s Copernicus program, the world’s most expansive network of environmental monitoring satellites. The new satellite will extend Europe’s record of global around-the-clock radar imaging, revealing information about environmental disasters, polar ice cover, and the use of water resources.

Doubling cadence … This was the fourth flight of Europe’s new Ariane 6 rocket, and its third operational launch. Arianespace plans one more Ariane 62 launch to close out the year with a pair of Galileo navigation satellites. The company aims to double its Ariane 6 launch cadence in 2026, with between six and eight missions planned, according to David Cavaillès, Arianespace’s CEO. The European launch provider will open its 2026 manifest with the first flight of the more powerful four-booster variant of the rocket. If the company does manage eight Ariane 6 flights in 2026, it will already be close to reaching the stated maximum launch cadence of between nine and 10 flights per year.

India sets its own record for payload mass. The Indian Space Research Organization on Sunday successfully launched the Indian Navy’s advanced communication satellite GSAT-7R, or CMS-03, on an LVM3 rocket from the Satish Dhawan Space Center, The Hindu reports. The indigenously designed and developed satellite, weighing approximately 4.4 metric tons (9,700 pounds), is the heaviest satellite ever launched by an Indian rocket and marks a major milestone in strengthening the Navy’s space-based communications and maritime domain awareness.

Going heavy … The launch Sunday was India’s fourth of 2025, a decline from the country’s high-water mark of eight orbital launches in a year in 2023. The failure in May of India’s most-flown rocket, the PSLV, has contributed to this year’s slower launch cadence. India’s larger rockets, the GSLV and LVM3, have been more active while officials grounded the PSLV for an investigation into the launch failure. (submitted by EllPeaTea)

Blue Origin preps for second flight of New Glenn. The road to the second flight of Blue Origin’s heavy-lifting New Glenn rocket got a lot clearer this week. The company confirmed it is targeting Sunday, November 9, for the launch of New Glenn from Cape Canaveral Space Force Station, Florida. This follows a successful test-firing of the rocket’s seven BE-4 main engines last week, Ars reports. Blue Origin, the space company owned by billionaire Jeff Bezos, said the engines operated at full power for 22 seconds, generating nearly 3.9 million pounds of thrust on the launch pad.

Fully integrated … With the launch date approaching, engineers worked this week to attach the rocket’s payload shroud containing two NASA satellites set to embark on a journey to Mars. Now that the rocket is fully integrated, ground crews will roll it back to Blue Origin’s Launch Complex-36 (LC-36) for final countdown preps. The launch window on Sunday opens at 2: 45 pm EST (19: 45 UTC). Blue Origin is counting on recovering the New Glenn first stage on the next flight after missing the landing on the rocket’s inaugural mission in January. Officials plan to reuse this booster on the third New Glenn launch early next year, slated to propel Blue Origin’s first unpiloted Blue Moon lander toward the Moon.

Next three launches

Nov. 8: Falcon 9 | Starlink 10-51 | Kennedy Space Center, Florida | 08: 30 UTC

Nov. 8: Long March 11H| Unknown Payload | Haiyang Spaceport, China Coastal Waters | 21: 00 UTC

Nov. 9: New Glenn | ESCAPADE | Cape Canaveral Space Force Station, Florida | 19: 45 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Canada invests in sovereign launch; India flexes rocket muscles Read More »

after-russian-spaceport-firm-fails-to-pay-bills,-electric-company-turns-the-lights-off

After Russian spaceport firm fails to pay bills, electric company turns the lights off

The fall and rise of PSO Kazan

As minor as this dispute may seem, it’s remarkable that PSO Kazan is working on a spaceport in Russia at all.

PSO Kazan won the contract to build the launch site’s second pad, 1A for the Angara rocket, in December 2017. The pad was due to be completed in time for an Angara launch in 2021. The company is owned by a Russian billionaire from the city of Kazan, Ravil Ziganshin, previously known for building sports arenas in the Republic of Tatarstan on the other side of the country from Vostochny.

The adventure into spaceport construction did not go well. According to Russian Space Web, the contract for spaceport construction was not signed until October 2018. Months later, amid allegations of criminal activity and delays, Roscosmos moved to cancel the contract with PSO Kazan.

Other firms emerged as bidders on the contract to build the Angara launch pad, among them the Crocus Group. However, they and others later backed out, saying the Russian government was offering to pay far less money than it would actually cost to build the launch site.

“I said I was ready, but not for that amount of money,” Aras Agalarov, founder of the Crocus Group, explained in an interview at the time. “When they asked me, I said there were two pieces of news. The first was that the second phase of the cosmodrome could be built in two years. The second was that it couldn’t be built with the money allocated. If you increase the cost, you’ll get everything in two years. If not, I’m sorry.”

A toxic reputation?

And so Roscosmos—under the leadership of Dmitry Rogozin at the time—went crawling back to PSO Kazan to lead construction of the Angara launch pad.

“Independent observers were puzzled by the sudden about-face and wondered whether Roscosmos had such a toxic reputation in the construction business that it had failed to attract any other contender for the job and, as a result, the State Corporation had no choice but to keep the original contractor on the hook,” Russian Space Web concluded about the decision.

After years of delays and cost overruns, the Angara pad was eventually completed, with its first launch last November. There does not appear to be too much demand, however, as there has not yet been a second launch from the A1 pad since.

After Russian spaceport firm fails to pay bills, electric company turns the lights off Read More »

if-you-want-to-satiate-ai’s-hunger-for-power,-google-suggests-going-to-space

If you want to satiate AI’s hunger for power, Google suggests going to space


Google engineers think they already have all the pieces needed to build a data center in orbit.

With Project Suncatcher, Google will test its Tensor Processing Units on satellites. Credit: Google

It was probably always when, not if, Google would add its name to the list of companies intrigued by the potential of orbiting data centers.

Google announced Tuesday a new initiative, named Project Suncatcher, to examine the feasibility of bringing artificial intelligence to space. The idea is to deploy swarms of satellites in low-Earth orbit, each carrying Google’s AI accelerator chips designed for training, content generation, synthetic speech and vision, and predictive modeling. Google calls these chips Tensor Processing Units, or TPUs.

“Project Suncatcher is a moonshot exploring a new frontier: equipping solar-powered satellite constellations with TPUs and free-space optical links to one day scale machine learning compute in space,” Google wrote in a blog post.

“Like any moonshot, it’s going to require us to solve a lot of complex engineering challenges,” Google’s CEO, Sundar Pichai, wrote on X. Pichai noted that Google’s early tests show the company’s TPUs can withstand the intense radiation they will encounter in space. “However, significant challenges still remain like thermal management and on-orbit system reliability.”

The why and how

Ars reported on Google’s announcement on Tuesday, and Google published a research paper outlining the motivation for such a moonshot project. One of the authors, Travis Beals, spoke with Ars about Project Suncatcher and offered his thoughts on why it just might work.

“We’re just seeing so much demand from people for AI,” said Beals, senior director of Paradigms of Intelligence, a research team within Google. “So, we wanted to figure out a solution for compute that could work no matter how large demand might grow.”

Higher demand will lead to bigger data centers consuming colossal amounts of electricity. According to the MIT Technology Review, AI alone could consume as much electricity annually as 22 percent of all US households by 2028. Cooling is also a problem, often requiring access to vast water resources, raising important questions about environmental sustainability.

Google is looking to the sky to avoid potential bottlenecks. A satellite in space can access an infinite supply of renewable energy and an entire Universe to absorb heat.

“If you think about a data center on Earth, it’s taking power in and it’s emitting heat out,” Beals said. “For us, it’s the satellite that’s doing the same. The satellite is going to have solar panels … They’re going to feed that power to the TPUs to do whatever compute we need them to do, and then the waste heat from the TPUs will be distributed out over a radiator that will then radiate that heat out into space.”

Google envisions putting a legion of satellites into a special kind of orbit that rides along the day-night terminator, where sunlight meets darkness. This north-south, or polar, orbit would be synchronized with the Sun, allowing a satellite’s power-generating solar panels to remain continuously bathed in sunshine.

“It’s much brighter even than the midday Sun on Earth because it’s not filtered by Earth’s atmosphere,” Beals said.

This means a solar panel in space can produce up to eight times more power than the same collecting area on the ground, and you don’t need a lot of batteries to reserve electricity for nighttime. This may sound like the argument for space-based solar power, an idea first described by Isaac Asimov in his short story Reason published in 1941. But instead of transmitting the electricity down to Earth for terrestrial use, orbiting data centers would tap into the power source in space.

“As with many things, the ideas originate in science fiction, but it’s had a number of challenges, and one big one is, how do you get the power down to Earth?” Beals said. “So, instead of trying to figure out that, we’re embarking on this moonshot to bring [machine learning] compute chips into space, put them on satellites that have the solar panels and the radiators for cooling, and then integrate it all together so you don’t actually have to be powered on Earth.”

SpaceX is driving down launch costs, thanks to reusable rockets and an abundant volume of Starlink satellite launches. Credit: SpaceX

Google has a mixed record with its ambitious moonshot projects. One of the most prominent moonshot graduates is the self-driving car kit developer Waymo, which spun out to form a separate company in 2016 and is now operational. The Project Loon initiative to beam Internet signals from high-altitude balloons is one of the Google moonshots that didn’t make it.

Ars published two stories last week on the promise of space-based data centers. One of the startups in this field, named Starcloud, is partnering with Nvidia, the world’s largest tech company by market capitalization, to build a 5 gigawatt orbital data center with enormous solar and cooling panels approximately 4 kilometers (2.5 miles) in width and length. In response to that story, Elon Musk said SpaceX is pursuing the same business opportunity but didn’t provide any details. It’s worth noting that Google holds an estimated 7 percent stake in SpaceX.

Strength in numbers

Google’s proposed architecture differs from that of Starcloud and Nvidia in an important way. Instead of putting up just one or a few massive computing nodes, Google wants to launch a fleet of smaller satellites that talk to one another through laser data links. Essentially, a satellite swarm would function as a single data center, using light-speed interconnectivity to aggregate computing power hundreds of miles over our heads.

If that sounds implausible, take a moment to think about what companies are already doing in space today. SpaceX routinely launches more than 100 Starlink satellites per week, each of which uses laser inter-satellite links to bounce Internet signals around the globe. Amazon’s Kuiper satellite broadband network uses similar technology, and laser communications will underpin the US Space Force’s next-generation data-relay constellation.

Artist’s illustration of laser crosslinks in space. Credit: TESAT

Autonomously constructing a miles-long structure in orbit, as Nvidia and Starcloud foresee, would unlock unimagined opportunities. The concept also relies on tech that has never been tested in space, but there are plenty of engineers and investors who want to try. Starcloud announced an agreement last week with a new in-space assembly company, Rendezvous Robotics, to explore the use of modular, autonomous assembly to build Starcloud’s data centers.

Google’s research paper describes a future computing constellation of 81 satellites flying at an altitude of some 400 miles (650 kilometers), but Beals said the company could dial the total swarm size to as many spacecraft as the market demands. This architecture could enable terawatt-class orbital data centers, according to Google.

“What we’re actually envisioning is, potentially, as you scale, you could have many clusters,” Beals said.

Whatever the number, the satellites will communicate with one another using optical inter-satellite links for high-speed, low-latency connectivity. The satellites will need to fly in tight formation, perhaps a few hundred feet apart, with a swarm diameter of a little more than a mile, or about 2 kilometers. Google says its physics-based model shows satellites can maintain stable formations at such close ranges using automation and “reasonable propulsion budgets.”

“If you’re doing something that requires a ton of tight coordination between many TPUs—training, in particular—you want links that have as low latency as possible and as high bandwidth as possible,” Beals said. “With latency, you run into the speed of light, so you need to get things close together there to reduce latency. But bandwidth is also helped by bringing things close together.”

Some machine-learning applications could be done with the TPUs on just one modestly sized satellite, while others may require the processing power of multiple spacecraft linked together.

“You might be able to fit smaller jobs into a single satellite. This is an approach where, potentially, you can tackle a lot of inference workloads with a single satellite or a small number of them, but eventually, if you want to run larger jobs, you may need a larger cluster all networked together like this,” Beals said.

Google has worked on Project Suncatcher for more than a year, according to Beals. In ground testing, engineers tested Google’s TPUs under a 67 MeV proton beam to simulate the total ionizing dose of radiation the chip would see over five years in orbit. Now, it’s time to demonstrate Google’s AI chips, and everything else needed for Project Suncatcher will actually work in the real environment.

Google is partnering with Planet, the Earth-imaging company, to develop a pair of small prototype satellites for launch in early 2027. Planet builds its own satellites, so Google has tapped it to manufacture each spacecraft, test them, and arrange for their launch. Google’s parent company, Alphabet, also has an equity stake in Planet.

“We have the TPUs and the associated hardware, the compute payload… and we’re bringing that to Planet,” Beals said. “For this prototype mission, we’re really asking them to help us do everything to get that ready to operate in space.”

Beals declined to say how much the demo slated for launch in 2027 will cost but said Google is paying Planet for its role in the mission. The goal of the demo mission is to show whether space-based computing is a viable enterprise.

“Does it really hold up in space the way we think it will, the way we’ve tested on Earth?” Beals said.

Engineers will test an inter-satellite laser link and verify Google’s AI chips can weather the rigors of spaceflight.

“We’re envisioning scaling by building lots of satellites and connecting them together with ultra-high bandwidth inter-satellite links,” Beals said. “That’s why we want to launch a pair of satellites, because then we can test the link between the satellites.”

Evolution of a free-fall (no thrust) constellation under Earth’s gravitational attraction, modeled to the level of detail required to obtain Sun-synchronous orbits, in a non-rotating coordinate system. Credit: Google

Getting all this data to users on the ground is another challenge. Optical data links could also route enormous amounts of data between the satellites in orbit and ground stations on Earth.

Aside from the technical feasibility, there have long been economic hurdles to fielding large satellite constellations. But SpaceX’s experience with its Starlink broadband network, now with more than 8,000 active satellites, is proof that times have changed.

Google believes the economic equation is about to change again when SpaceX’s Starship rocket comes online. The company’s learning curve analysis shows launch prices could fall to less than $200 per kilogram by around 2035, assuming Starship is flying about 180 times per year by then. This is far below SpaceX’s stated launch targets for Starship but comparable to SpaceX’s proven flight rate with its workhorse Falcon 9 rocket.

It’s possible there could be even more downward pressure on launch costs if SpaceX, Nvidia, and others join Google in the race for space-based computing. The demand curve for access to space may only be eclipsed by the world’s appetite for AI.

“The more people are doing interesting, exciting things in space, the more investment there is in launch, and in the long run, that could help drive down launch costs,” Beals said. “So, it’s actually great to see that investment in other parts of the space supply chain and value chain. There are a lot of different ways of doing this.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

If you want to satiate AI’s hunger for power, Google suggests going to space Read More »