Space

intuitive-machines’-second-attempt-to-land-on-the-moon-also-went-sideways

Intuitive Machines’ second attempt to land on the Moon also went sideways

Inside a small control room, during the middle of the day on Thursday local time in Texas, about a dozen white-knuckled engineers at a space startup named Intuitive Machines started to get worried. Their spacecraft, a lander named Athena, was beginning its final descent down to the lunar surface.

A little more than a year had passed since the company’s first attempt to land on the Moon with a similarly built vehicle, Odysseus. Due to problems with that spacecraft’s laser rangefinder, it skidded into the Moon’s surface and toppled over.

So engineers at Intuitive Machines had checked, and re-checked the laser-based altimeters on Athena. When the lander got down within about 30 km of the lunar surface, they tested the rangefinders again. Worryingly, there was some noise in the readings as the laser bounced off the Moon. However, the engineers had reason to believe that, maybe, the readings would improve as the spacecraft got nearer to the surface.

“Our hope was that the signal to noise would improve as we got closer to the Moon,” said Tim Crain, chief technology officer for Intuitive Machines, speaking to reporters afterward.

It didn’t. The noise remained. And so, to some extent, Athena went down to the Moon blind. The spacecraft’s propulsion system, based on liquid oxygen and methane, and designed in-house, worked beautifully. But in the final moments, the spacecraft did not quite know where it was relative to the surface.

Probably lying on its side

Beyond that, Crain and the rest of the company, including its chief executive Steve Altemus, could not precisely say what happened. After Athena landed, the engineers in mission control could talk to the spacecraft, and they were able to generate some power from its solar arrays. But precisely where it was, or how it lay on the ground, they could not say a few hours later.

Based on a reading from an inertial measurement unit inside the vehicle, most likely Athena is lying on its side. This is the same fate Odysseus met last year, when it skidded into the Moon, broke a leg, and toppled over.

Intuitive Machines’ second attempt to land on the Moon also went sideways Read More »

when-europe-needed-it-most,-the-ariane-6-rocket-finally-delivered

When Europe needed it most, the Ariane 6 rocket finally delivered


“For this sovereignty, we must yield to the temptation of preferring SpaceX.”

Europe’s second Ariane 6 rocket lifted off from the Guiana Space Center on Thursday with a French military spy satellite. Credit: ESA-CNES-Arianespace-P. Piron

Europe’s Ariane 6 rocket lifted off Thursday from French Guiana and deployed a high-resolution reconnaissance satellite into orbit for the French military, notching a success on its first operational flight.

The 184-foot-tall (56-meter) rocket lifted off from Kourou, French Guiana, at 11: 24 am EST (16: 24 UTC). Twin solid-fueled boosters and a hydrogen-fueled core stage engine powered the Ariane 6 through thick clouds on an arcing trajectory north from the spaceport on South America’s northeastern coast.

The rocket shed its strap-on boosters a little more than two minutes into the flight, then jettisoned its core stage nearly eight minutes after liftoff. The spent rocket parts fell into the Atlantic Ocean. The upper stage’s Vinci engine ignited two times to reach a nearly circular polar orbit about 500 miles (800 kilometers) above the Earth. A little more than an hour after launch, the Ariane 6 upper stage deployed CSO-3, a sharp-eyed French military spy satellite, to begin a mission providing optical surveillance imagery to French intelligence agencies and military forces.

“This is an absolute pleasure for me today to announce that Ariane 6 has successfully placed into orbit the CSO-3 satellite,” said David Cavaillolès, who took over in January as CEO of Arianespace, the Ariane 6’s commercial operator. “Today, here in Kourou, we can say that thanks to Ariane 6, Europe and France have their own autonomous access to space back, and this is great news.”

This was the second flight of Europe’s new Ariane 6 rocket, following a mostly successful debut launch last July. The first test flight of the unproven Ariane 6 carried a batch of small, relatively inexpensive satellites. An Auxiliary Propulsion Unit (APU)—essentially a miniature second engine—on the upper stage shut down in the latter portion of the inaugural Ariane 6 flight, after the rocket reached orbit and released some of its payloads. But the unit malfunctioned before a third burn of the upper stage’s main engine, preventing the Ariane 6 from targeting a controlled reentry into the atmosphere.

The APU has several jobs on an Ariane 6 flight, including maintaining pressure inside the upper stage’s cryogenic propellant tanks, settling propellants before each main engine firing, and making fine adjustments to the rocket’s position in space. The APU appeared to work as designed Thursday, although this launch flew a less demanding profile than the test flight last year.

Is Ariane 6 the solution?

Ariane 6 has been exorbitantly costly and years late, but its first operational success comes at an opportune time for Europe.

Philippe Baptiste, France’s minister for research and higher education, says Ariane 6 is “proof of our space sovereignty,” as many European officials feel they can no longer rely on the United States. Baptiste, an engineer and former head of the French space agency, mentioned “sovereignty” so many times, turning his statement into a drinking game crossed my mind.

“The return of Donald Trump to the White House, with Elon Musk at his side, already has significant consequences on our research partnerships, on our commercial partnerships,” Baptiste said. “Should I mention the uncertainties weighing today on our cooperation with NASA and NOAA, when emblematic programs like the ISS (International Space Station) are being unilaterally questioned by Elon Musk?

“If we want to maintain our independence, ensure our security, and preserve our sovereignty, we must equip ourselves with the means for strategic autonomy, and space is an essential part of this,” he continued.

Philippe Baptiste arrives at a government question session at the Senate in Paris on March 5, 2025. Credit: Magali Cohen/Hans Lucas/AFP via Getty Images

Baptiste’s comments echo remarks from a range of European leaders in recent weeks.

French President Emmanuel Macron said in a televised address Wednesday night that the French were “legitimately worried” about European security after Trump reversed US policy on Ukraine. America’s NATO allies are largely united in their desire to continue supporting Ukraine in its defense against Russia’s invasion, while the Trump administration seeks a ceasefire that would require significant Ukrainian concessions.

“I want to believe that the United States will stay by our side, but we have to be prepared for that not to be the case,” Macron said. “The future of Europe does not have to be decided in Washington or Moscow.”

Friedrich Merz, set to become Germany’s next chancellor, said last month that Europe should strive to “achieve independence” from the United States. “It is clear that the Americans, at least this part of the Americans, this administration, are largely indifferent to the fate of Europe.”

Merz also suggested Germany, France, and the United Kingdom should explore cooperation on a European nuclear deterrent to replace that of the United States, which has committed to protecting European territory from Russian attack for more than 75 years. Macron said the French military, which runs the only nuclear forces in Europe fully independent of the United States, could be used to protect allies elsewhere on the continent.

Access to space is also a strategic imperative for Europe, and it hasn’t come cheap. ESA paid more than $4 billion to develop the Ariane 6 rocket as a cheaper, more capable replacement for the Ariane 5, which retired in 2023. There are still pressing questions about Ariane 6’s cost per launch and whether the rocket will ever be able to meet its price target and compete with SpaceX and other companies in the commercial market.

But European officials have freely admitted the commercial market is secondary on their list of Ariane 6 goals.

European satellite operators stopped launching their payloads on Russian rockets after the invasion of Ukraine in 2022. Now, with Elon Musk inserting himself into European politics, there’s little appetite among European government officials to launch their satellites on SpaceX’s Falcon 9 rocket.

The second Ariane 6 rocket on the launch pad in French Guiana. Credit: ESA–S. Corvaja

The Falcon 9 was the go-to choice for the European Space Agency, the European Union, and several national governments in Europe after they lost access to Russia’s Soyuz rocket and when Europe’s homemade Ariane 6 and Vega rockets faced lengthy delays. ESA launched a $1.5 billion space telescope on a Falcon 9 rocket in 2023, then returned to SpaceX to launch a climate research satellite and an asteroid explorer last year. The European Union paid SpaceX to launch four satellites for its flagship Galileo navigation network.

European space officials weren’t thrilled to do this. ESA was somewhat more accepting of the situation, with the agency’s director general recognizing Europe was suffering from an “acute launcher crisis” two years ago. On the other hand, the EU refused to even acknowledge SpaceX’s role in delivering Galileo satellites to orbit in the text of a post-launch press release.

“For this sovereignty, we must yield to the temptation of preferring SpaceX or another competitor that may seem trendier, more reliable, or cheaper,” Baptiste said. “We did not yield for CSO-3, and we will not yield in the future. We cannot yield because doing so would mean closing the door to space for good, and there would be no turning back. This is why the first commercial launch of Ariane 6 is not just a technical and one-off success. It marks a new milestone, essential in the choice of European space independence and sovereignty.”

Two flights into its career, Ariane 6 seems to offer a technical solution for Europe’s needs. But at what cost? Arianespace hasn’t publicly disclosed the cost for an Ariane 6 launch, although it’s likely somewhere in the range of 80 million to 100 million euros, about 40 percent lower than the cost of an Ariane 5. This is about 50 percent more than SpaceX’s list price for a dedicated Falcon 9 launch.

A new wave of European startups should soon begin launching small rockets to gain a foothold in the continent’s launch industry. These include Isar Aerospace, which could launch its first Spectrum rocket in a matter of weeks. These companies have the potential to offer Europe an option for cheaper rides to space, but the startups won’t have a rocket in the class of Ariane 6 until at least the 2030s.

Until then, at least, European governments will have to pay more to guarantee autonomous access to space.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

When Europe needed it most, the Ariane 6 rocket finally delivered Read More »

yes,-we-are-about-to-be-treated-to-a-second-lunar-landing-in-a-week

Yes, we are about to be treated to a second lunar landing in a week

Because the space agency now has some expectation that Intuitive Machines will be fully successful with its second landing attempt, it has put some valuable experiments on board. Principal among them is the PRIME-1 experiment, which has an ice drill to sample any ice that lies below the surface. Drill, baby, drill.

The Athena lander also is carrying a NASA-funded “hopper” that will fire small hydrazine rockets to bounce around the Moon and explore lunar craters near the South Pole. It might even fly into a lava tube. If this happens it will be insanely cool.

Because this is a commercial program, NASA has encouraged the delivery companies to find additional, private payloads. Athena has some nifty ones, including a small rover from Lunar Outpost, a data center from Lonestar Data Holdings, and a 4G cellular network from Nokia. So there’s a lot riding on Athena‘s success.

So will it be a success?

“Of course, everybody’s wondering, are we gonna land upright?” Tim Crain, Intuitive Machines’ chief technology officer, told Ars. “So, I can tell you our laser test plan is much more comprehensive than those last time.”

During the first landing about a year ago, Odysseus‘ laser-based system for measuring altitude failed during the descent. Because Odysseus did not have access to altitude data, the spacecraft touched down faster, and on a 12-degree slope, which exceeded the 10-degree limit. As a result, the lander skidded across the surface, and one of its six legs broke, causing it to fall over.

Crain said about 10 major changes were made to the spacecraft and its software for the second mission. On top of that, about 30 smaller things, such as more efficient file management, were updated on the new vehicle.

In theory, everything should work this time. Intuitive Machines has the benefit of all of its learnings from the last time, and nearly everything worked right during this first attempt. But the acid test comes on Thursday.

The company and NASA will provide live coverage of the attempt beginning at 11: 30 am ET (16: 30 UTC) on NASA+, with landing set for just about one hour later. The Moon may be a harsh mistress, but hopefully not too harsh.

Yes, we are about to be treated to a second lunar landing in a week Read More »

butch-wilmore-says-elon-musk-is-“absolutely-factual”-on-dragon’s-delayed-return

Butch Wilmore says Elon Musk is “absolutely factual” on Dragon’s delayed return

For what it is worth, all of the reporting done by Ars over the last nine months suggests the decision to return Wilmore and Williams this spring was driven by technical reasons and NASA’s needs on board the International Space Station, rather than because of politics.

Q. How do you feel about waking up and finding yourself in a political storm?

Wilmore: I can tell you at the outset, all of us have the utmost respect for Mr. Musk, and obviously, respect and admiration for our president of the United States, Donald Trump. We appreciate them. We appreciate all that they do for us, for human space flight, for our nation. The words they said, politics, I mean, that’s part of life. We understand that. And there’s an important reason why we have a political system, a political system that we do have, and we’re behind it 100 percent. We know what we’ve lived up here, the ins and outs, and the specifics that they may not be privy to. And I’m sure that they have some issues that they are dealing with, information that they have, that we are not privy to. So when I think about your question, that’s part of life, we are on board with it.

Q. Did politics influence NASA’s decision for you to stay longer in space?

Wilmore: From my standpoint, politics is not playing into this at all. From our standpoint, I think that they would agree, we came up prepared to stay long, even though we plan to stay short. That’s what we do in human spaceflight. That’s what your nation’s human space flight program is all about, planning for unknown, unexpected contingencies. And we did that, and that’s why we flowed right into Crew 9, into Expedition 72 as we did. And it was somewhat of a seamless transition, because we had planned ahead for it, and we were prepared.

Butch Wilmore says Elon Musk is “absolutely factual” on Dragon’s delayed return Read More »

the-modern-era-of-low-flying-satellites-may-begin-this-week

The modern era of low-flying satellites may begin this week

Clarity-1 at the pad

Albedo’s first big test may come within the next week and the launch of the “Transporter-13” mission on SpaceX’s Falcon 9 rocket. The company’s first satellite, Clarity-1, is 530 kg (1170 pounds) and riding atop the stack of ridesharing spacecraft. The mission could launch as soon as this coming weekend from Vandenberg Space Force Base in California.

The Clarity-1 satellite will be dropped off between 500 and 600 km orbit and then attempt to lower itself to an operational orbit 274 km (170 miles) above the planet.

This is a full-up version of Albedo’s satellite design. The spacecraft is larger than a full-size refrigerator, similar to a phone booth, and is intended to operate for a lifetime of about five years, depending on the solar cycle. Clarity-1 is launching near the peak of the 11-year solar cycle, so this could reduce its active lifetime.

Albedo recently won a contract from the US Air Force Research Laboratory that is worth up to $12 million to share VLEO-specific, on-orbit data and provide analysis to support the development of new missions and payloads beyond its own optical sensors.

Serving many different customers

The advantages of such a platform include superior image quality, less congested orbits, and natural debris removal as inoperable satellites are pulled down into Earth’s atmosphere and burnt up.

But what about the drawbacks? In orbits closer to Earth the primary issue is atomic oxygen, which is highly reactive and energetic. There are also plasma eddies and other phenomena that interfere with the operation of satellites and degrade their materials. This makes VLEO far more hazardous than higher altitudes. It’s also more difficult to capture precise imagery.

“The hardest part is pointing and attitude control,” Haddad said, “because that’s already hard in LEO, when you have a big telescope and you’re trying to get a high resolution. Then you put it in VLEO, where the Earth’s rotation beneath is moving faster, and it just exacerbates the problem.”

In the next several years, Albedo is likely to reach a constellation sized at about 24 satellites, but that number will depend on customer demand, Haddad said. Albedo has previously announced about half a dozen of its commercial customers who will task Clarity-1 for various purposes, such as power and pipeline monitoring or solar farm maintenance.

But first, it has to demonstrate its technology.

The modern era of low-flying satellites may begin this week Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

rocket-report:-starship-will-soon-fly-again;-gilmour-has-a-launch-date

Rocket Report: Starship will soon fly again; Gilmour has a launch date


One Falcon 9 launched an Intuitive Machines lunar lander, an asteroid prospector, and a NASA science probe.

Peter Beck, Rocket Lab’s founder and CEO, stands inside a test version of the “Hungry Hippo,” a nickname used to describe the clamshell-like nose cone of the Neutron rocket’s first stage booster. The fairing will open in flight to release Neutron’s second and payloads to continue into orbit, then close as the booster comes back to Earth for recovery. Credit: Rocket Lab

Welcome to Edition 7.33 of the Rocket Report! Phew, what a week for Rocket Lab! The company released a bevy of announcements in conjunction with its quarterly earnings report Thursday. Rocket Lab is spending a lot of money to develop the medium-lift rocket Neutron rocket, and as we’ll discuss below, a rocket landing platform and a new satellite design. For now, the company is sticking by its public statements that the Neutron rocket will launch this year—the official line is it will debut in the second half of 2025—but this schedule assumes near-perfect execution on the program. “We’ve always been clear that we run aggressive schedules,” said Peter Beck, Rocket Lab’s founder and CEO. The official schedule doesn’t quite allow me to invoke a strict interpretation of Berger’s Law, which states that if a rocket’s debut is predicted to happen in the fourth quarter of a year, and that quarter is six or more months away, the launch will be delayed. However, the spirit of the law seems valid here. This time last year, Rocket Lab targeted a first launch by the end of 2024, an aggressive target that has come and gone.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Australian startup sets a launch date. The first attempt to send an Australian-made rocket into orbit is set to take place no sooner than March 15, the Australian Broadcasting Corporation reports. Gilmour Space Technologies’ launch window announcement marks a major development for the company, which has been working towards a test launch for a decade. Gilmour previously hoped to launch its test rocket, Eris, in May 2024, but had to wait for the Australian government to issue a launch license and airspace approvals for the flight to go forward. Those are now in hand, clearing the last regulatory hurdle before liftoff.

Setting expectations … Gilmour’s Eris rocket is made of three stages powered by hybrid engines consuming a solid fuel and a liquid oxidizer. Eris is designed to haul payloads of up to 672 pounds (305 kilograms) to low-Earth orbit, and will launch from Bowen Orbital Spaceport in Queensland on Australia’s northeastern coast. Gilmour said it would be “very lucky” if the rocket reached orbit on first attempt. “Success means different things for different people, but ignition and liftoff will be huge,” said James Gilmour, the company’s co-founder. (submitted by ZygP)

Blue Origin is keeping a secret. Blue Origin conducted the tenth crewed flight of its New Shepard suborbital vehicle Tuesday, carrying six people, one of whom remained at least semi-anonymous, Space News reports. The five passengers Blue Origin identified come from business and entertainment backgrounds, but in a break from past missions, the company did not disclose the identity of the sixth person, with hosts of the company webcast saying that individual “requested we not share his name today.” Photos released by the company before the launch, and footage from the webcast, showed that person to be a man wearing a flight suit with an “R. Wilson” nametag, and the NS-30 mission patch also included “Wilson” with the names of the other members of the crew. Not disclosing the name of someone who has been to space has little precedent.

Big names on NS-31 … Some of the passengers Blue Origin will fly on the next New Shepard crew mission lack the anonymity of R. Wilson. The next flight, designated NS-31, will carry an all-female crew, including music star Katy Perry, CBS host Gayle King, and Lauren Sánchez, a former journalist who is engaged to Blue Origin’s founder, Jeff Bezos. Blue Origin identified the other three passengers as Aisha Bowe, Amanda Ngyuen, and Kerianne Flynn. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is still blowing through cash. Virgin Galactic reported a net loss of $347 million in 2024, compared to a $502 million net loss in 2023, with the improvement primarily driven by lower operating expenses, the company said this week in a quarterly earnings release. These lower operating expenses are tied to Virgin Galactic’s decision to suspend operations of its VSS Unity suborbital rocket plane last year to focus investment into a new series of suborbital spacecraft known as Delta-class ships. Virgin Galactic said cash and cash equivalents fell 18 percent from the same period a year ago to $178.6 million. Investors have been eager for details on when it would resume—and then ramp up—flights to increase sales and cash in on a backlog of around 700 ticket holders, Bloomberg reports.

March toward manufacturing … Virgin Galactic said it plans to start assembling its first Delta-class ship in March, with a first flight targeted for the summer of 2026, two years after it stopped flying VSS Unity. The Delta ships will be easier to recycle between flights, and will carry six paying passengers, rather than the four VSS Unity carried on each flight. Company officials believe a higher flight rate with more passengers will bring in significantly more revenue, which was reported at just $430,000 in the fourth quarter of 2024. (submitted by EllPeaTea)

Japanese customers seem to love Rocket Lab. While Rocket Lab is developing the larger Neutron rocket, the company’s operational Electron launch vehicle continues to dominate the market for dedicated launches of small satellites. Rocket Lab announced Thursday it signed a new multi-launch deal with iQPS, a Japan-based Earth imaging company. The new deal follows an earlier multi-launch contract signed with iQPS in 2024 and brings the total number of booked dedicated Electron launches for iQPS to eight.

Radar is all the rage … These eight Electron launches in 2025 and 2026 will help iQPS build out its planned constellation of 36 radar remote sensing satellites capable of imaging the Earth day and night, and through any weather. The new deal is one of the largest Electron launch agreements to date, second only to Rocket Lab’s ten launch deal with another Japanese radar constellation operator, Synspective, signed last year. (submitted by zapman987)

Falcon 9 launch targets Moon and asteroid. With two commercial Moon landers already on their way, Houston-based Intuitive Machines launched its second robotic lander atop a SpaceX Falcon 9 rocket Wednesday, CBS News reports. Given the on-time launch and assuming no major problems, the Athena lander is expected to descend to touchdown on a flat mesa-like structure known as Mons Mouton on March 6, setting down just 100 miles from the Moon’s south pole—closer than any other spacecraft has attempted. Intuitive Machines became the first company to successfully land a spacecraft on the Moon last year, but the Athena lander will pursue more complex goals. It will test a NASA-provided drill designed to search for subsurface ice, deploy a small “micro-rover,” and dispatch a rocket-powered drone to explore a permanently shadowed crater.

Hitching a ride … The Athena lander didn’t take up all the capacity of the Falcon 9 rocket. Three other spacecraft also rocketed into space Wednesday night. These rideshare payloads were AstroForge’s commercially developed Odin asteroid prospector to search for potentially valuable mineral deposits, NASA’s Lunar Trailblazer satellite to characterize lunar ice from a perch in lunar orbit, and a compact space tug from Epic Aerospace. (submitted by EllPeaTea)

This rocket got a visitor for the first time since 2009. Astroscale’s ADRAS-J mission became the first spacecraft (at least in the unclassified world) to approach a piece of space junk in low-Earth orbit, Ars reports. This particular object, a derelict upper stage from a Japanese H-IIA rocket, has been in orbit since 2009. It’s one of about 2,000 spent rocket bodies circling the Earth and one of more than 45,000 objects in orbit tracked by US Space Command. Astroscale, based in Tokyo, built and launched the ADRAS-J mission in partnership with the Japanese space agency as a demonstration to show how a commercial satellite could rendezvous with an object in orbit that was never designed to receive visitors.

Next steps … ADRAS-J worked like a champ, closing in to a distance of less than 50 feet (15 meters) from the H-IIA rocket as it orbited several hundred miles above the Earth. The rocket is a “non-cooperative” object representative of other large pieces of space junk, which Astroscale wants to remove from orbit with a series of trash collecting satellites like ADRAS-J. But this demo only validated part of the technology required for space debris removal. Japan’s space agency and Astroscale are partnering on another mission, ADRAS-J2, for launch in 2027 to go up and latch on to the same H-IIA rocket and steer it out of orbit toward a controlled reentry over the ocean.

An update on Falcon 9’s upper stage. SpaceX said that a Falcon 9 upper stage that reentered over Europe earlier this month suffered a propellant leak that prevented it from doing a controlled reentry, Space News reports. The upper stage was placed in orbit on a February 1 launch from Vandenberg Space Force Base in California. After deploying its payload of 22 Starlink satellites, the upper stage was expected to perform a burn to enable a controlled reentry over the ocean, a standard procedure on most Falcon 9 launches to low-Earth orbit. The stage, though, did not appear to perform the burn and remained in orbit. Its orbit decayed from atmospheric drag and the stage reentered over Europe on February 19. Debris from the Falcon 9 second stage, including composite overwrapped pressure vessels, fell in Poland, landing near the city of Poznań.

Higher than expected body rates … In an update posted to its website this week, SpaceX blamed the upper stage anomaly on a liquid oxygen leak. “During the coast phase of this Starlink mission, a small liquid oxygen leak developed, which ultimately drove higher than expected vehicle body rates,” SpaceX said. SpaceX aborted the deorbit burn and instead passivated the upper stage, a process where the rocket discharges energy from its batteries and vents leftover propellant from its tanks to minimize the risk of a break-up in orbit. This was the third incident involving a Falcon 9 upper stage in a little more than six months. (submitted by EllPeaTea)

Rocket Lab’s reveals “Return On Investment.” Rocket Lab’s Neutron rocket is designed for partial reusability, and the company unveiled Thursday an important piece of infrastructure to make this a reality. Neutron’s first stage booster will land on a modified barge named “Return On Investment” measuring around 400 feet (122 meters) wide, somewhat bigger than SpaceX’s drone ships used for Falcon 9 landings at sea. In order to prep the barge for rocket duty, the company is adding autonomous ground support equipment to capture and secure the landed Neutron, blast shielding to protect equipment during Neutron landings, and station-keeping thrusters for precise positioning. It should be ready to enter service in 2026. Rocket Lab also has the option to return the Neutron first stage back to the launch site when mission parameters allow the rocket to reserve enough propellant to make the return journey.

More news from Rocket Lab … Continuing the firehose of news from Rocket Lab this week, the company announced a new satellite design called “Flatellite” that looks remarkably similar to SpaceX’s Starlink satellites. The satellite is flat in shape, hence its name, and stackable to fit as many spacecraft as possible into the envelope of a rocket’s payload fairing. Rocket Lab said the new satellite “can be produced in high volumes and (is) tailored for large constellations, targeting high value applications and national security missions.” (submitted by zapman987)

The writing is on the wall for SLS. The lights may be starting to go out for NASA’s Space Launch System program. On Wednesday, one of the Republican space policy leaders most consistently opposed to commercial heavy lift rockets over the last decade—as an alternative to NASA’s large SLS rocket—has changed his mind, Ars reports. “We need an off-ramp for reliance on the SLS,” said Scott Pace, director of the Space Policy Institute at George Washington University, in written testimony before a congressional hearing about US space policy.

Not keeping Pace … A physicist and influential policy expert, Pace has decades of experience researching and writing space policy. He has served in multiple Republican administrations, most recently as executive secretary of the National Space Council from 2017 to 2020. He strongly advocated for the SLS rocket after Congress directed NASA to develop it in 2011. As part of his policy recommendations, Pace said NASA should seek to use commercial providers of heavy lift launch so that NASA can send “multiple” crew and cargo missions to the Moon each year. He notes that the SLS rocket is not reusable and is incapable of a high flight rate. Commercial options from SpaceX, Blue Origin, and United Launch Alliance are now available, Pace wrote.

The verdict is in for Starship Flight 7. SpaceX believes the spectacular break-up of Starship’s upper stage during its most recent test flight was caused by a harmonic response that stressed onboard hardware, leading to a fire and loss of the vehicle, Aviation Week reports. Higher-than-expected vibrations stressed hardware in the ship’s propulsion system, triggering propellant leaks and sustained fires until the test flight ended prematurely. The rocket broke apart and deposited debris over the Turks and Caicos Islands and the Atlantic Ocean, and forced dozens of commercial and private aircraft to delay their flights or steer into safer airspace.

Whole lotta shaking … SpaceX’s description of the problem as a harmonic response suggests vibrations during Starship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing. SpaceX completed an extended duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight, which could launch from South Texas as soon as Monday.

Next three launches

March 1: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 10: 00 UTC

March 2: Ceres 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 08: 10 UTC

March 2: Soyuz-2.1b | Glonass-K2 No. 14L | Plesetsk Cosmodrome, Russia | 22: 22 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Starship will soon fly again; Gilmour has a launch date Read More »

astroscale-aced-the-world’s-first-rendezvous-with-a-piece-of-space-junk

Astroscale aced the world’s first rendezvous with a piece of space junk

Astroscale’s US subsidiary won a $25.5 million contract from the US Space Force in 2023 to build a satellite refueler that can hop around geostationary orbit. Like the ADRAS-J mission, this project is a public-private partnership, with Astroscale committing $12 million of its own money. In January, the Japanese government selected Astroscale for a contract worth up to $80 million to demonstrate chemical refueling in low-Earth orbit.

The latest win for Astroscale came Thursday, when the Japanese Ministry of Defense awarded the company a contract to develop a prototype satellite that could fly in geostationary orbit and collect information on other objects in the domain for Japan’s military and intelligence agencies.

“We are very bullish on the prospects for defense-related business,” said Nobu Matsuyama, Astroscale’s chief financial officer.

Astroscale’s other projects include a life extension mission for an unidentified customer in geostationary orbit, providing a similar service as Northrop Grumman’s Mission Extension Vehicle (MEV).

So, can Astroscale really do all of this? In an era of a militarized final frontier, it’s easy to see the usefulness of sidling up next to a “non-cooperative” satellite—whether it’s to refuel it, repair it, de-orbit it, inspect it, or (gasp!) disable it. Astroscale’s demonstration with ADRAS-J showed it can safely operate near another object in space without navigation aids, which is foundational to any of these applications.

So far, governments are driving demand for this kind of work.

Astroscale raised nearly $400 million in venture capital funding before going public on the Tokyo Stock Exchange last June. After quickly spiking to nearly $1 billion, the company’s market valuation has dropped to about $540 million as of Thursday. Astroscale has around 590 full-time employees across all its operating locations.

Matsuyama said Astroscale’s total backlog is valued at about 38.9 billion yen, or $260 million. The company is still in a ramp-up phase, reporting operating losses on its balance sheet and steep research and development spending that Matsuyama said should max out this year.

“We are the only company that has proved RPO technology for non-cooperative objects, like debris, in space,” Okada said last month.

“In simple terms, this means approach and capture of objects,” Okada continued. “This capability did not exist before us, but one’s mastering of this technology enables you to provide not only debris removal service, but also orbit correction, refueling, inspection, observation, and eventually repair and reuse services.”

Astroscale aced the world’s first rendezvous with a piece of space junk Read More »

german-startup-to-attempt-the-first-orbital-launch-from-western-europe

German startup to attempt the first orbital launch from Western Europe

The nine-engine first stage for Isar Aerospace’s Spectrum rocket lights up on the launch pad on February 14. Credit: Isar Aerospace

Isar builds almost all of its rockets in-house, including Spectrum’s Aquila engines.

“The flight will be the first integrated test of tens of thousands of components,” said Josef Fleischmann, Isar’s co-founder and chief technical officer. “Regardless of how far we get, this first test flight will hopefully generate an enormous amount of data and experience which we can apply to future missions.”

Isar is the first European startup to reach this point in development. “Reaching this milestone is a huge success in itself,” Meltzer said in a statement. “And while Spectrum is ready for its first test flight, launch vehicles for flights two and three are already in production.”

Another Bavarian company, Rocket Factory Augsburg, destroyed its first booster during a test-firing on its launch pad in Scotland last year, ceding the frontrunner mantle to Isar. RFA received its launch license from the UK government last month and aims to deliver its second booster to the launch site for hot-fire testing and a launch attempt later this year.

There’s an appetite within the European launch industry for new companies to compete with Arianespace, the continent’s sole operational launch services provider backed by substantial government support. Delays in developing the Ariane 6 rocket and several failures of Europe’s smaller Vega launcher forced European satellite operators to look abroad, primarily to SpaceX, to launch their payloads.

The European Space Agency is organizing the European Launcher Challenge, a competition that will set aside some of the agency’s satellites for launch opportunities with a new crop of startups. Isar is one of the top contenders in the competition to win money from ESA. The agency expects to award funding to multiple European launch providers after releasing a final solicitation later this year.

The first flight of the Spectrum rocket will attempt to reach a polar orbit, flying north from Andøya Spaceport. Located at approximately 69 degrees north latitude, the spaceport is poised to become the world’s northernmost orbital launch site.

Because the inaugural launch of the Spectrum rocket is a test flight, it won’t carry any customer payloads, an Isar spokesperson told Ars.

German startup to attempt the first orbital launch from Western Europe Read More »

spacex-engineers-brought-on-at-faa-after-probationary-employees-were-fired

SpaceX engineers brought on at FAA after probationary employees were fired

Kiernan is currently a lead software engineer at SpaceX, according to his LinkedIn page. Before joining SpaceX in May 2020, he worked at Wayfair and is a 2017 Dartmouth graduate.

Smeal is a software engineer who has worked at SpaceX since September 2021, according to his LinkedIn. He graduated from Saint Vincent College in 2018.

Glantz is a software engineer who has worked at SpaceX since May 2024 and worked as an engineering analyst at Goldman Sachs from 2019 to 2021, according to his LinkedIn, and graduated from the University of Michigan in 2019.

Malaska, Kiernan, Smeal, and Glantz did not immediately respond to requests for comment. The FAA also did not immediately respond to requests for comment.

In his post on X, Duffy wrote, “Because I know the media (and Hillary Clinton) will claim Elon’s team is getting special access, let me make clear that the @FAANews regularly gives tours of the command center to both media and companies.”

But on Wednesday, FAA acting administrator Chris Rocheleau wrote in an email to FAA staff, viewed by WIRED, that DOGE and the teams of special government employees deployed in federal agencies were “top-of-mind,” before noting that the agency had “recently welcomed” a team of special government employees who had already toured some FAA facilities. “We are asking for their help to engineer solutions while we keep the airspace open and safe,” he wrote, adding that the new employees had already visited the FAA Command Center and Potomac TRACON, a facility that controls the airspace around and provides air traffic control services to airports in the DC, Maryland, and Virginia areas.

In a Department of Transportation all-hands meeting late last week, Duffy responded to a question about DOGE’s role in national airspace matters, and without explicitly mentioning the new employees, suggested help was needed on reforming Notice to Air Mission (NOTAM) alerts, a critical system that distributes real-time data and warnings to pilots but which has had significant outages, one as recently as this month. “If I can get ideas from really smart engineers on how we can fix it, I’m going to take those ideas,” he said, according to a recording of the meeting reviewed by WIRED. “Great engineers” might also work on airspace issues, he said.

SpaceX engineers brought on at FAA after probationary employees were fired Read More »

in-a-last-minute-decision,-white-house-decides-not-to-terminate-nasa-employees

In a last-minute decision, White House decides not to terminate NASA employees

So what changed?

It was not immediately clear why. A NASA spokesperson in Washington, DC, offered no comment on the updated guidance. Two sources indicated that it was plausible that private astronaut Jared Isaacman, whom President Trump has nominated to lead the space agency, asked for the cuts to be put on hold.

Although this could not be confirmed, it seems reasonable that Isaacman would want to retain some control over where cuts at the agency are made. Firing all probationary employees—which is the most expedient way to reduce the size of government—is a blunt instrument. It whacks new hires that the agency may have recruited for key positions, as well as high performers who earned promotions.

The reprieve in these terminations does not necessarily signal that NASA will escape significant budget or employment cuts in the coming months.

The administration could still seek to terminate probationary employees. In addition, Ars reported earlier that directors at the agency’s field centers have been told to prepare options for a “significant” reduction in force in the coming months. The scope of these cuts has not been defined, and it’s likely they would need to be negotiated with Congress.

In a last-minute decision, White House decides not to terminate NASA employees Read More »

by-the-end-of-today,-nasa’s-workforce-will-be-about-10-percent-smaller

By the end of today, NASA’s workforce will be about 10 percent smaller

Spread across NASA’s headquarters and 10 field centers, which dot the United States from sea to sea, the space agency has had a workforce of nearly 18,000 civil servants.

However, by the end of today, that number will have shrunk by about 10 percent since the beginning of the second Trump administration four weeks ago. And the world’s preeminent space agency may still face significant additional cuts.

According to sources, about 750 employees at NASA accepted the “fork in the road” offer to take deferred resignation from the space agency later this year. This sounds like a lot of people, but generally about 1,000 people leave the agency every year, so effectively, many of these people might just be getting paid to leave jobs they were already planning to exit from.

The culling of “probationary” employees will be more impactful. As it has done at other federal agencies, the Trump administration is generally firing federal employees who are in the “probationary” period of their employment, which includes new hires within the last one or two years or long-time employees who have moved into or been promoted into a new position. About 1,000 or slightly more employees at NASA were impacted by these cuts.

Adding up the deferred resignations and probationary cuts, the Trump White House has now trimmed about 10 percent of the agency’s workforce.

However, the cuts may not stop there. Two sources told Ars that directors at the agency’s field centers have been told to prepare options for a “significant” reduction in force in the coming months. The scope of these cuts has not been defined, and it’s possible they may not even happen, given that the White House must negotiate budgets for NASA and other agencies with the US Congress. But this directive for further reductions in force casts more uncertainty on an already demoralized workforce and signals that the Trump administration would like to make further cuts.

By the end of today, NASA’s workforce will be about 10 percent smaller Read More »