Space

there’s-another-leak-on-the-iss,-but-nasa-is-not-saying-much-about-it

There’s another leak on the ISS, but NASA is not saying much about it

No one is certain. The best guess is that the seals on the hatch leading to the PrK module are, in some way, leaking. In this scenario, pressure from the station is feeding the leak inside the PrK module through these seals, leading to a stable pressure inside—making it appear as though the PrK module leaks are fully repaired.

At this point, NASA is monitoring the ongoing leak and preparing for any possibility. A senior industry source told Ars that the NASA leadership of the space station program is “worried” about the leak and its implications.

This is one reason the space agency delayed the launch of a commercial mission carrying four astronauts to the space station, Axiom-4, on Thursday.

“The postponement of Axiom Mission 4 provides additional time for NASA and Roscosmos to evaluate the situation and determine whether any additional troubleshooting is necessary,” NASA said in a statement. “A new launch date for the fourth private astronaut mission will be provided once available.”

One source indicated that the new tentative launch date is now June 18. However, this will depend on whatever resolution there is to the leak issue.

What’s the worst that could happen?

The worst-case scenario for the space station is that the ongoing leaks are a harbinger of a phenomenon known as “high cycle fatigue,” which affects metal, including aluminum. Consider that if you bend a metal clothes hanger once, it bends. But if you bend it back and forth multiple times, it will snap. This is because, as the metal fatigues, it hardens and eventually snaps. This happens suddenly and without warning, as was the case with an Aloha Airlines flight in 1988.

The concern is that some of these metal structures on board the station could fail quickly and catastrophically. Accordingly, in its previous assessments, NASA has classified the structural cracking issue on the space station as the highest level of concern on its 5v5 risk matrix to gauge the likelihood and severity of risks to the space station.

In the meantime, the space agency has not been forthcoming with any additional information. Despite many questions from Ars Technica and other publications, NASA has not scheduled a press conference or said anything else publicly about the leaks beyond stating, “The crew aboard the International Space Station is safely conducting normal operations.”

There’s another leak on the ISS, but NASA is not saying much about it Read More »

rocket-report:-new-delay-for-europe’s-reusable-rocket;-spacex-moves-in-at-slc-37

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37


Canada is the only G7 nation without a launch program. Quebec wants to do something about that.

This graphic illustrates the elliptical shape of a geosynchronous transfer orbit in green, and the circular shape of a geosynchronous orbit in blue. In a first, SpaceX recently de-orbited a Falcon 9 upper stage from GTO after deploying a communications satellite. Credit: European Space Agency

Welcome to Edition 7.48 of the Rocket Report! The shock of last week’s public spat between President Donald Trump and SpaceX founder Elon Musk has worn off, and Musk expressed regret for some of his comments going after Trump on social media. Musk also backtracked from his threat to begin decommissioning the Dragon spacecraft, currently the only way for the US government to send people to the International Space Station. Nevertheless, there are many people who think Musk’s attachment to Trump could end up putting the US space program at risk, and I’m not convinced that danger has passed.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Quebec invests in small launch company. The government of Quebec will invest CA$10 million ($7.3 million) into a Montreal-area company that is developing a system to launch small satellites into space, The Canadian Press reports. Quebec Premier François Legault announced the investment into Reaction Dynamics at the company’s facility in Longueuil, a Montreal suburb. The province’s economy minister, Christine Fréchette, said the investment will allow the company to begin launching microsatellites into orbit from Canada as early as 2027.

Joining its peers … Canada is the only G7 nation without a domestic satellite launch capability, whether it’s through an independent national or commercial program or through membership in the European Space Agency, which funds its own rockets. The Canadian Space Agency has long eschewed any significant spending on developing a Canadian satellite launcher, and a handful of commercial launch startups in Canada haven’t gotten very far. Reaction Dynamics was founded in 2017 by Bachar Elzein, formerly a researcher in multiphase and reactive flows at École Polytechnique de Montréal, where he specialized in propulsion and combustion dynamics. Reaction Dynamic plans to launch its first suborbital rocket later this year, before attempting an orbital flight with its Aurora rocket as soon as 2027. (submitted by Joey S-IVB)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Another year, another delay for Themis. The European Space Agency’s Themis program has suffered another setback, with the inaugural flight of its reusable booster demonstrator now all but certain to slip to 2026, European Spaceflight reports. It has been nearly six years since the European Space Agency kicked off the Themis program to develop and mature key technologies for future reusable rocket stages. Themis is analogous to SpaceX’s Grasshopper reusable rocket prototype tested more than a decade ago, with progressively higher hop tests to demonstrate vertical takeoff and vertical landing techniques. When the program started, an initial hop test of the first Themis demonstrator was expected to take place in 2022.

Tethered to terra firma … ArianeGroup, which manufactures Europe’s Ariane rockets, is leading the Themis program under contract to ESA, which recently committed an additional 230 million euros ($266 million) to the effort. This money is slated to go toward the development of a single-engine variant of the Themis program, continued development of the rocket’s methane-fueled engine, and upgrades to a test stand at ArianeGroup’s propulsion facility in Vernon, France. Two months ago, an official update on the Themis program suggested the first Themis launch campaign would begin before the end of the year. Citing sources close to the program, European Spaceflight reports the first Themis integration tests at the Esrange Space Center in Sweden are now almost certain to slip from late 2025 to 2026.

French startup tests a novel rocket engine. While Europe’s large government-backed rocket initiatives face delays, the continent’s space industry startups are moving forward on their own. One of these companies, a French startup named Alpha Impulsion, recently completed a short test-firing of an autophage rocket engine, European Spaceflight reports. These aren’t your normal rocket engines that burn conventional kerosene, methane, or hydrogen fuel. An autophage engine literally consumes itself as it burns, using heat from the combustion process to melt its plastic fuselage and feed the molten plastic into the combustion chamber in a controlled manner. Alpha Impulsion called the May 27 ground firing a successful test of the “largest autophage rocket engine in the world.”

So, why hasn’t this been done before? … The concept of a self-consuming rocket engine sounds like an idea that’s so crazy it just might work. But the idea remained conceptual from when it was first patented in 1938 until an autophage engine was fired in a controlled manner for the first time in 2018. The autophage design offers several advantages, including its relative simplicity compared to the complex plumbing of liquid and hybrid rockets. But there are serious challenges associated with autophage engines, including how to feed molten fuel into the combustion chamber and how to scale it up to be large enough to fly on a viable rocket. (submitted by trimeta and EllPeaTea)

Rocket trouble delays launch of private crew mission. A propellant leak in a Falcon 9 booster delayed the launch of a fourth Axiom Space private astronaut mission to the International Space Station this week, Space News reports. SpaceX announced the delay Tuesday, saying it needed more time to fix a liquid oxygen leak found in the Falcon 9 booster during inspections following a static-fire test Sunday. “Once complete–and pending Range availability–we will share a new launch date,” the company stated. The Ax-4 mission will ferry four commercial astronauts, led by retired NASA commander Peggy Whitson, aboard a Dragon spacecraft to the ISS for an approximately 14-day stay. Whitson will be joined by crewmates from India, Poland, and Hungary.

Another problem, too … While SpaceX engineers worked on resolving the propellant leak on the ground, a leak of another kind in orbit forced officials to order a longer delay to the Ax-4 mission. In a statement Thursday, NASA said it is working with the Russian space agency to understand a “new pressure signature” in the space station’s Russian service module. For several years, ground teams have monitored a slow air leak in the aft part of the service module, and NASA officials have identified it as a safety risk. NASA’s statement on the matter was vague, only saying that cosmonauts on the station recently inspected the module’s interior surfaces and sealed additional “areas of interest.” The segment is now holding pressure, according to NASA. (submitted by EllPeaTea)

SpaceX tries something new with Falcon 9. With nearly 500 launches under its belt, SpaceX’s Falcon 9 rocket isn’t often up to new tricks. But the company tried something new following a launch on June 7 with a radio broadcasting satellite for SiriusXM. The Falcon 9’s upper stage placed the SXM-10 satellite into an elongated, high-altitude transfer orbit, as is typical for payloads destined to operate in geosynchronous orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. When a rocket releases a satellite in this type of high-energy orbit, the upper stage has usually burned almost all of its propellant, leaving little fuel to steer itself back into Earth’s atmosphere for a destructive reentry. This means these upper stages often remain in space for decades, becoming a piece of space junk that transits across the orbits of many other satellites.

Now, a solution … SpaceX usually deorbits rockets after they deploy payloads like Starlink satellites into low-Earth orbit, but deorbiting a rocket from a much higher geosynchronous transfer orbit is a different matter. “Last week, SpaceX successfully completed a controlled deorbit of the SiriusXM-10 upper stage after GTO payload deployment,” wrote Jon Edwards, SpaceX’s vice president of Falcon and Dragon programs. “While we routinely do controlled deorbits for LEO stages (e.g., Starlink), deorbiting from GTO is extremely difficult due to the high energy needed to alter the orbit, making this a rare and remarkable first for us. This was only made possible due to the hard work and brilliance of the Falcon GNC (guidance, navigation, and control) team and exemplifies SpaceX’s commitment to leading in both space exploration and public safety.”

New Glenn gets a tentative launch date. Five months have passed since Blue Origin’s New Glenn rocket made its mostly successful debut in January. At one point, the company targeted “late spring” for the second launch of the rocket. However, on Monday, Blue Origin’s CEO, Dave Limp, acknowledged on social media that the rocket’s next flight will now no longer take place until at least August 15, Ars reports. Although he did not say so, this may well be the only other New Glenn launch this year. The mission, with an undesignated payload, will be named “Never Tell Me the Odds,” due to the attempt to land the booster. “One of our key mission objectives will be to land and recover the booster,” Limp wrote. “This will take a little bit of luck and a lot of excellent execution. We’re on track to produce eight GS2s [second stages] this year, and the one we’ll fly on this second mission was hot-fired in April.”

Falling shortBefore 2025 began, Limp set expectations alongside Blue Origin founder Jeff Bezos: New Glenn would launch eight times this year. That’s not going to happen. It’s common for launch companies to take a while ramping up the flight rate for a new rocket, but Bezos told Ars in January that his priority for Blue Origin this year was to hit a higher cadence with New Glenn. Elon Musk’s rift with President Donald Trump could open a pathway for Blue Origin to capture more government business if the New Glenn rocket is able to establish a reliable track record. Meanwhile, Limp told Blue Origin employees last month that Jarrett Jones, the manager running the New Glenn program, is taking a sabbatical. Although it appears Jones’ leave may have been planned, the timing is curious.

Making way for Starship at Cape Canaveral. The US Air Force is moving closer to authorizing SpaceX to move into one of the largest launch pads at Cape Canaveral Space Force Station in Florida, with plans to use the facility for up to 76 launches of the company’s Starship rocket each year, Ars reports. A draft Environmental Impact Statement (EIS) released by the Department of the Air Force, which includes the Space Force, found SpaceX’s planned use of Space Launch Complex 37 (SLC-37) at Cape Canaveral would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37 will have no significant impact on the company’s competitors in the launch industry.

Bringing the rumble … SLC-37 was the previous home to United Launch Alliance’s Delta IV rocket, which last flew from the site in April 2024, a couple of months after the military announced SpaceX was interested in using the launch pad. While it doesn’t have a lease for full use of the launch site, SpaceX has secured a “right of limited entry” from the Space Force to begin preparatory work. This included the explosive demolition of the launch pad’s Delta IV-era service towers and lightning masts Thursday, clearing the way for eventual construction of two Starship launch towers inside the perimeter of SLC-37. The new Starship launch towers at SLC-37 will join other properties in SpaceX’s Starship empire, including nearby Launch Complex 39A at NASA’s Kennedy Space Center, and SpaceX’s privately owned facility at Starbase, Texas.

Preps continue for Starship Flight 10. Meanwhile, at Starbase, SpaceX is moving forward with preparations for the next Starship test flight, which could happen as soon as next month following three consecutive flights that fell short of expectations. This next launch will be the 10th full-scale test flight of Starship. Last Friday, June 6, SpaceX test-fired the massive Super Heavy booster designated to launch on Flight 10. All 33 of its Raptor engines ignited on the launch pad in South Texas. This is a new Super Heavy booster. On Flight 9 last month, SpaceX flew a reused Super Heavy booster that launched and was recovered on a flight in January.

FAA signs off on SpaceX investigation … The Federal Aviation Administration said Thursday it has closed the investigation into Starship Flight 8 in March, which spun out of control minutes after liftoff, showering debris along a corridor of ocean near the Bahamas and the Turks and Caicos Islands. “The FAA oversaw and accepted the findings of the SpaceX-led investigation,” an agency spokesperson said. “The final mishap report cites the probable root cause for the loss of the Starship vehicle as a hardware failure in one of the Raptor engines that resulted in inadvertent propellant mixing and ignition. SpaceX identified eight corrective actions to prevent a reoccurrence of the event.” SpaceX implemented the corrective actions prior to Flight 9 last month, when Starship progressed further into its mission before starting to tumble in space. It eventually reentered the atmosphere over the Indian Ocean. The FAA has mandated a fresh investigation into Flight 9, and that inquiry remains open.

Next three launches

June 13: Falcon 9 | Starlink 12-26 | Cape Canaveral Space Force Station, Florida | 15: 21 UTC

June 14: Long March 2D | Unknown Payload | Jiuquan Satellite Launch Center, China | 07: 55 UTC

June 16: Atlas V | Project Kuiper KA-02| Cape Canaveral Space Force Station, Florida | 17: 25 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: New delay for Europe’s reusable rocket; SpaceX moves in at SLC-37 Read More »

isaacman’s-bold-plan-for-nasa:-nuclear-ships,-seven-crew-dragons,-accelerated-artemis

Isaacman’s bold plan for NASA: Nuclear ships, seven-crew Dragons, accelerated Artemis


Needs a Super Administrator

“I was very disappointed, especially because it was so close to confirmation.”

Jared Isaacman speaks at the Spacepower Conference in Orlando, Florida. Credit: John Kraus

Nearly two weeks have passed since Jared Isaacman received a fateful, brief phone call from two officials in President Trump’s Office of Personnel Management. In those few seconds, the trajectory of his life over the next three and a half years changed dramatically.

The president, the callers said, wanted to go in a different direction for NASA’s administrator. At the time, Isaacman was within days of a final vote on the floor of the US Senate and assured of bipartisan support. He had run the gauntlet of six months of vetting, interviews, and a committee hearing. He expected to be sworn in within a week. And then, it was all gone.

“I was very disappointed, especially because it was so close to confirmation and I think we had a good plan to implement,” Isaacman told Ars on Wednesday.

Isaacman’s nomination was pulled for political reasons. As SpaceX founder and one-time President Trump confidant Elon Musk made his exit from the White House, key officials who felt trampled on by Musk took their revenge. They knifed a political appointment, Isaacman, who shared Musk’s passion for extending humanity’s reach to Mars. The dismissal was part of a chain of events that ultimately led to a break in the relationship between Trump and Musk, igniting a war of words.

When I spoke with Isaacman this week, I didn’t want to rehash the political melee. I preferred to talk about his plan. After all, he had six months to look under the hood of NASA, identify the problems that were holding the space agency back, and release its potential in this new era of spaceflight.

A man with a plan

“It shouldn’t be a surprise, the organizational structure is very heavy with management and leadership,” Isaacman said. “Lots of senior leadership with long meetings, who have their deputies, who have their chiefs of staff, who have deputy chiefs of staff and associate deputies. It is not just a NASA problem; across government, there are principal, deputy, assistant-to-the-deputy roles. It makes it very hard to have a culture of ownership and urgent decision-making.”

Isaacman said his plan, a blueprint of more than 100 pages detailing various actions to modernize NASA and make it more efficient, would have started with the bureaucracy. “It was going to be hard to get the big, exciting stuff done without a reorganization, a rebuild, including cultural rebuilding, and an aggressive, hungry, mission-first culture,” he said.

One of his first steps would have been to attempt to accelerate the timeline for the Artemis II mission, which is scheduled to fly four astronauts around the Moon in April 2026. He planned to bring in “strike” teams of engineers to help move Artemis and other programs forward. Isaacman wanted to see the Artemis II vehicle on the pad later this summer, with the goal of launching in December of this year, echoing the historic launch of Apollo 8 in December 1968.

Isaacman also sought to reverse the space agency’s decision to cut utilization of the International Space Station due to budget issues.

“Instead of the current thinking, three crew members every eight months to manage the budget, I wanted to go seven crew members every four months,” he said. “I was even going to pay for one of the missions, if need be, to just get more people up there, more cracks at science, and try and figure out the orbital economy, or else life will be very hard on the commercial LEO destinations.”

As part of this, he would have pushed for certification of SpaceX’s Dragon spacecraft to carry seven astronauts—which was in the vehicle’s baseline design—instead of the current four. This would have allowed NASA to fly more professional astronauts, but also payload specialists like the agency used to do during the Space Shuttle program. Essentially, NASA experts of certain experiments would fly and conduct their own research.

“I wanted to bring back the Payload Specialist program and open it up to the NASA workforce,” he said. “Because things are pretty difficult right now, and I wanted to get people excited and reward the best.”

He also planned to seek goodwill by donating his salary as administrator to Space Camp at the US Space & Rocket Center in Huntsville, Alabama, for scholarships to inspire the next generation of explorers.

Nuclear spaceships

Isaacman’s signature issue was going to be a full-bore push into nuclear electric propulsion, which he views as essential for the sustainable exploration of the Solar System by humans. Nuclear electric propulsion converts heat from a fission reactor to electrical power, like a power plant on Earth, and then uses this energy to produce thrust by accelerating an ionized propellant, such as xenon. Nuclear propulsion requires significantly less fuel than chemical propulsion, and it opens up more launch windows to Mars and other destinations.

“We would have gone right to a 100-kilowatt test vehicle that we would send somewhere inspiring with some great cameras,” he said. “Then we are going right to megawatt class, inside of four years, something you could dock a human-rated spaceship to, or drag a telescope to a Lagrange point and then return, big stuff like that. The goal was to get America underway in space on nuclear power.”

Another key element of this plan is that it would give some of NASA’s field centers, including Marshall Space Flight Center, important work to do after the cancellation of the Space Launch System rocket.

“Pivoting to nuclear spaceships, in my mind, was just the right thing to do for the SLS states, even if it’s not the right locations or the right people. There is a lot of dollars there that those states don’t want to let go of,” he said. “When you speak to those senators, if you give them another kind of bar to grab onto, they can get excited about what comes next. And imagine an SLS-caliber budget going into building, literally, nuclear orbiters that could do all sorts of things. That’s directionally correct, right?”

What direction NASA takes now is unclear, but the loss of Isaacman is acute. The agency’s acting administrator, Janet Petro, is largely taking direction from the White House Office of Management and Budget and has no independence. A confirmed administrator is now months away. The lights at the historic space agency get a little dimmer each day as a result.

Considering politics

As for what he plans to do now that he suddenly has time on his hands—Isaacman stepped down as chief executive of Shift4, the financial payments company he founded, to become NASA administrator—Isaacman is weighing his options.

“I’m sure a lot of supporters in the space community would love to hear me say that I’m done with politics, but I’m not sure that’s the case,” he said. “I want to serve our country, give back, and make a difference. I don’t know what, but I will find something.”

What his role in politics would be, Isaacman, who has described himself as a moderate, Republican-leaning voter, is unsure. However, he wants to help bridge a nation that is riven by partisan politics. “I think if you don’t have more moderates and better communicators try to pull us closer together, we’re just going to keep moving farther apart,” he said. “And that just doesn’t seem like it’s in any way good for the country.”

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Isaacman’s bold plan for NASA: Nuclear ships, seven-crew Dragons, accelerated Artemis Read More »

5-things-in-trump’s-budget-that-won’t-make-nasa-great-again

5 things in Trump’s budget that won’t make NASA great again

If signed into law as written, the White House’s proposal to slash nearly 25 percent from NASA’s budget would have some dire consequences.

It would cut the agency’s budget from $24.8 billion to $18.8 billion. Adjusted for inflation, this would be the smallest NASA budget since 1961, when the first American launched into space.

The proposed funding plan would halve NASA’s funding for robotic science missions and technology development next year, scale back research on the International Space Station, turn off spacecraft already exploring the Solar System, and cancel NASA’s Space Launch System rocket and Orion spacecraft after two more missions in favor of procuring lower-cost commercial transportation to the Moon and Mars.

The SLS rocket and Orion spacecraft have been targets for proponents of commercial spaceflight for several years. They are single-use, and their costs are exorbitant, with Moon missions on SLS and Orion projected to cost more than $4 billion per flight. That price raises questions about whether these vehicles will ever be able to support a lunar space station or Moon base where astronauts can routinely rotate in and out on long-term expeditions, like researchers do in Antarctica today.

Reusable rockets and spaceships offer a better long-term solution, but they won’t be ready to ferry people to the Moon for a while longer. The Trump administration proposes flying SLS and Orion two more times on NASA’s Artemis II and Artemis III missions, then retiring the vehicles. Artemis II’s rocket is currently being assembled at Kennedy Space Center in Florida for liftoff next year, carrying a crew of four around the far side of the Moon. Artemis III would follow with the first attempt to land humans on the Moon since 1972.

The cuts are far from law

Every part of Trump’s budget proposal for fiscal year 2026 remains tentative. Lawmakers in each house of Congress will write their own budget bills, which must go to the White House for Trump’s signature. A Senate bill released last week includes language that would claw back funding for SLS and Orion to support the Artemis IV and Artemis V missions.

5 things in Trump’s budget that won’t make NASA great again Read More »

she-was-a-disney-star-with-platinum-records,-but-bridgit-mendler-gave-it-up-to-change-the-world

She was a Disney star with platinum records, but Bridgit Mendler gave it up to change the world


“The space industry has a ground bottleneck, and the problem is going to get worse.”

The Northwood Space team is all smiles after the first successful test of “Frankie.” Clockwise, from lower left: Shaurya Luthra, Marvin Shu, Josh Lehtonen, Thomas Row, Dan Meinzer, Griffin Cleverly, Bridgit Mendler. Credit: Shaurya Luthra

The Northwood Space team is all smiles after the first successful test of “Frankie.” Clockwise, from lower left: Shaurya Luthra, Marvin Shu, Josh Lehtonen, Thomas Row, Dan Meinzer, Griffin Cleverly, Bridgit Mendler. Credit: Shaurya Luthra

Bridgit Mendler was not in Hollywood anymore. Instead, she found herself in rural North Dakota, where the stars sparkled overhead rather than on the silver screen. And she was freezing.

When her team tumbled out of their rental cars after midnight, temperatures had already plummeted into the 40s. Howling winds carried their breath away before it could fog the air. So it was with no small sense of urgency that the group scrambled to assemble a jury-rigged antenna to talk to a spacecraft that would soon come whizzing over the horizon. A few hours later, the rosy light of dawn shone on the faces of a typically scrappy space startup: mostly male, mostly disheveled.

Then there was Mendler, the former Disney star and pop music sensation—and she was running the whole show.

Mendler followed an improbable path from the Disney Channel to North Dakota. She was among the brightest adolescent stars born in the early 1990s, along with Ariana Grande, Demi Lovato, and Selena Gomez, who gained fame as teenagers on the Disney Channel and Nickelodeon by enthralling Gen Z. During the first decade of the new millennium, before the rise of Musical.ly and then TikTok, television still dominated the attention of young children. And they were watching the Disney Channel in droves.

Like many of her fellow teenage stars, Mendler parlayed television fame into pop stardom, scoring a handful of platinum records. But in her mid-20s, Mendler left that world behind and threw herself into academia. She attended some of the country’s top universities and married an aerospace engineer. A couple of years ago, the two of them founded a company to address what they believed was a limiting factor in the space economy: transferring data from orbit.

Their company, Northwood Space, employed just six people when it deployed to North Dakota last October. But the team already had real hardware. On the windswept plain, they unpacked and assembled “Frankie,” their cobbled-together, phased-array satellite dish affectionately named after Mary Shelley’s masterpiece Frankenstein.

“We had the truck arrive at two o’clock in the morning,” Mendler said. “Six hours later, we were operational. We started running passes. We were able to transmit to a satellite on our first try.” The team had been up all night by then. “I guess that’s when my Celsius addiction kind of kicked in,” she said.

Guzzling energy drinks isn’t the healthiest activity, but it fits with the high-energy, frenetic rush of building a space startup. To survive without a billionaire’s backing, startups must stay lean and move quickly. And it’s not at all clear that Northwood will survive, as most space startups fail due to a lack of funding, long technology horizons, or regulatory hurdles. So within a year of seriously beginning operations, it’s notable that Northwood was already in the field, testing hardware and finding modest success.

From a technological standpoint, a space mission must usually complete three functions. A spacecraft must launch into orbit. It must deploy its solar panels, begin operations, and collect data. Finally, it must send its data back. If satellite data does not return to Earth in a timely manner, it’s worthless. This process is far more difficult than one might think—and not that many people think about it. “Ground stations,” Mendler acknowledges, are some of the most “unsexy and boring problems” in the space industry.

The 32-year-old Mendler now finds herself exactly where she wants to be. The life she has chosen—leading a startup in gritty El Segundo, California, delving into regulatory minutiae, and freezing in rural North Dakota to tackle “boring” problems—lies a world away from a seemingly glamorous life in the entertainment industry. That’s just fine with her.

“When I was growing up, I always said I wanted to be everything,” she said. “So in a certain sense, maybe I wouldn’t be surprised about where I ended up. But I would certainly be happy.”

Good Luck Charlie

Mendler may have wanted to be everything, but in her early years, what she most wanted to be was an actor. In 2001, when Mendler was eight, her parents moved across the country from Washington, DC, to the Bay Area. Her father designed fuel-efficient automobile engines, and her mother was an architect doing green design. Her mom, working from home, enrolled Mendler in an acting camp to help fill the days.

Mendler caught the bug. Although her parents were supportive of these dreams, they told her she would have to work to make it happen.

“We still had the Yellow Pages at the time, and so my little kid self was just flipping through the Yellow Pages trying to figure out how to get an agent,” she said. “And it was a long journey. Something that people outside of acting maybe don’t realize is that you encounter a shit ton of rejection. And so my introduction to acting was a ton of rejection in the entertainment industry. But I was like, ‘I’m gonna freaking figure this out.’”

After three years, Mendler began to get voice-acting roles in small films and video games. In November, 2006, she appeared on television for the first time in an episode of the soap opera General Hospital. Another three years would pass before she had a real breakthrough, appearing as a recurring character on Wizards of Waverly Place, a Disney Channel show starring Selena Gomez. She played a vampire girlfriend.

Mendler starred as “Teddy” in the Disney Channel show Good Luck Charlie. Here, she’s sharing a moment with her sister, “Charlie.”

Credit: Adam Taylor/Disney Channel via Getty Images

Mendler starred as “Teddy” in the Disney Channel show Good Luck Charlie. Here, she’s sharing a moment with her sister, “Charlie.” Credit: Adam Taylor/Disney Channel via Getty Images

Mendler impressed enough in this role to be offered the lead in a new sitcom on Disney Channel, Good Luck Charlie, playing the older sister to a toddler named Charlie. In this role, Mendler made a video diary for Charlie, offering advice on how to be a successful teenager. The warm-hearted series ran for four years. Episodes regularly averaged more than 5 million viewers.

My two daughters were among them. They were a decade younger than Mendler, who was 18 when the first episodes aired in 2010. I would sometimes watch the show with my girls. Mendler’s character was endearing, and her advice to Charlie, I believe, helped my own younger daughters anticipate their teenage years. A decade and a half later, my kids still look up to her not just for being on television but for everything else she has accomplished.

As her star soared on the Disney Channel, Mendler moved into music. She recorded gold and platinum records, including her biggest hit, “Ready or Not,” in 2012.

Prominent childhood actors have always struggled with the transition to adulthood. Disney stars like Lindsay Lohan and Demi Lovato developed serious substance abuse problems, while others, such as Miley Cyrus and Selena Gomez, abruptly adopted new, much more mature images that contrasted sharply with their characters on children’s TV shows.

Mendler chose a different path.

Making an impact

As a pre-teen, Mendler would lie in bed at night listening to her mom working upstairs in the kitchen. They lived in a small house amid the redwoods north of Sausalito, California. When Mendler awoke some mornings, her mom would still be tapping away at her architectural designs. “That’s kind of how I viewed work,” Mendler said.

One of her favorite books as a kid was Miss Rumphius, about a woman who spread lupine seeds (also known as bluebonnets) along the coast of Maine to make the countryside more beautiful. The picture book offered an empowering message: Every person has a choice about how to make an impact on the world.

This environment shaped Mendler. She saw her mom work all night, saw experimental engines built by her dad scattered around the house, and had conversations around the dinner table about the future and how she could find her place in it. As she aged into adulthood, performing before thousands of people on stage and making TV shows and movies, Mendler felt like she was missing something. In her words, life in Los Angeles felt “anemic.” She had always liked to create things herself, and she wasn’t doing that.

“The niche that I had wedged myself into was not allowing me to have my own voice and perspective,” she said. “I wound up going down a path where I was more the vessel for other people’s creations, and I wondered what it would be like to be a little bit more in charge of my voice than I was in Hollywood.”

So Mendler channeled her inner nerd. She began to bring textbooks on game theory to the set of movies and TV shows. She took a few college courses. When a topic intrigued her, she would email an author or professor or reach out to them on Twitter.

Her interest was turbocharged when she neared her 25th birthday. Throughout the mid-2010s, Mendler continued to act and release music. One day, while filming a movie called Father of the Year in Massachusetts for Netflix, she had a day off. Her uncle took Mendler to visit the famed Media Lab at the Massachusetts Institute of Technology. This research lab brings together grad students, researchers, and entrepreneurs from various disciplines to develop technology—things like socially engaging robots and biologically inspired engineering. It was a vibrant meeting space for brilliant minds who wanted to build a better future.

“I knew right then I needed to go there,” she said. “I needed to find a way.”

But there was a problem. The Media Lab only offered graduate student programs. Mender didn’t have an undergraduate degree. She’d only taken a handful of college courses. Officials at MIT told her that if she could build her own things, they would consider admitting her to the program. So she threw herself into learning how to code, working on starter projects in HTML, JavaScript, CSS, and Python. It worked.

In 2018, Mendler posted on Twitter that she was starting a graduate program at MIT to focus on better understanding social media. “As an entertainer, for years I struggled with social media because I felt like there was a more loving and human way to connect with fans. That is what I’m going to study,” she wrote. “Overall, I just hope that this time can be an adventure, and I have a thousand ideas I want to share with you so please stay tuned!”

That fall she did, in fact, start working on social media. Mendler was fascinated with it—Twitter in particular—and its role as the new public square. But at the Media Lab, there are all manner of interdisciplinary groups. The one right next to Mendler, for example, was focused on space.

Pop startup

In the months before she left Los Angeles for MIT, Mendler’s life changed in an important way. Through friends, she met an aerospace engineer named Griffin Cleverly. Southern California is swarming with aerospace engineers, but it’s perhaps indicative of the different circles between Hollywood and Hawthorne that Cleverly was the first rocket scientist Mendler had ever met.

“The conversations we had were totally different,” she said. “He has so many thoughts about so many things, both in aerospace and other topics.”

They hit it off. Not long after Mendler left for the MIT Lab, Cleverly followed her to Massachusetts, first applying himself to different projects at the lab before taking a job working on satellites for Lockheed Martin. The two married a year later, in 2019.

By the next spring, Mendler was finishing her master’s thesis at MIT on using technology to help resolve conflicts. Then the world shut down due to the COVID-19 pandemic. She and Cleverly suddenly had a lot of time on their hands.

They retreated to a lake house owned by Mendler’s family in rural New Hampshire. The house had been in the family since just after World War II, and the couple decided to experiment with antennas to see what they could do. They would periodically mask up and drive to a Home Depot in nearby Concord for supplies. They built different kinds of antennas, including parabolic and helical designs, to see what they could communicate with far away.

Mendler gave up a successful career in music and acting to earn a master’s degree at MIT.

Mendler gave up a successful career in music and acting to earn a master’s degree at MIT.

As they experimented, Mendler and Cleverly began to think about the changing nature of the space industry. At the time, SpaceX’s Starlink constellation was just coming online to deliver broadband around the world. The company’s Falcon 9 launches were ramping up. Satellites were becoming smaller and cheaper, constellations were proliferating, and companies like K2 were seeking to mass produce.

Mendler and Cleverly believed that the volume of data coming down from space was about to explode—and that existing commercial networks weren’t capable of handling it all.

“The space industry has been on even-keeled growth for a long time,” Cleverly said. “But what happens when you hit that hockey stick across the industry? Launch seemed like it was getting taken care of. Mass manufacturing of satellites appeared to be coming. We saw these trends and were trying to understand how the industry was going to react to them. When we looked at the ground side, it wasn’t clear that anyone really was thinking about the ramifications there.”

As the pandemic waned, the couple resumed more normal lives. Mendler continued her studies at MIT, but she was now thoroughly hooked on space. Her husband excelled at working with technology to communicate with satellites, so Mendler focused on the non-engineering side of the space industry. “With space, so many folks focus on how complicated it is from an engineering perspective, and for good reason, because there are massive engineering problems to solve,” she said. “But these are also really operationally complex problems.”

For example, ground systems that communicate with satellites as they travel around the world operate in different jurisdictions, necessitating contracts and transactions in many countries. Issues with liability, intellectual property, insurance, and regulations abound. So Mendler decided that the next logical step after MIT was to attend law school. Because she lacked an undergraduate degree, most schools wouldn’t admit her. But Harvard University has an exception for exceptional students.

“Harvard was one of the few schools that admitted me,” she said. “I ended up going to law school because I was curious about understanding the operational aspects of working in space.”

These were insanely busy years. In 2022, when she began law school, Mendler was still conducting research at MIT. She soon got an internship at the Federal Communications Commission that gave her a broader view of the space industry from a regulatory standpoint. And in August 2022, she and Cleverly, alongside a software expert from Capella Space named Shaurya Luthra, founded Northwood Space.

So Bridgit Mendler, while studying at MIT and Harvard simultaneously, added a new title to her CV: chief executive officer.

Wizards of Waverly Space

Initially, the founders of Northwood Space did little more than study the market and write a few research papers, assessing the demand for sending data down to Earth, whether there would be customers for a new commercial network to download this data, and if affordable technology solutions could be built for this purpose. After about a year, they were convinced.

“Here’s the vision we ended up with,” Mendler said. “The space industry has a ground bottleneck, and the problem is going to get worse. So let’s build a network that can address that bottleneck and accelerate space capabilities. The best way to go about that was building capacity.”

If you’re like most people, you don’t spend much time pondering how data gets to and from space. To the extent one thinks about Starlink, it’s probably the satellite trains and personal dishes that spring to mind. But SpaceX has also had to build large ground stations around the world, known as gateways, to pipe data into space from the terrestrial Internet. Most companies lack the resources to build global gateways, so they use a shared commercial network. This has drawbacks, though.

Getting data down in a timely manner is not a trivial problem. From the earliest days of NASA through commercial operations today, operators on Earth generally do not maintain continual contact with satellites in space. For spacecraft in a polar orbit, contact might be made several times a day, with a lag in data of perhaps 30 minutes or as high as 90 minutes in some cases.

This is not great. Let’s say you want to use satellite imagery to fight wildfires. Data on the spread of a wildfire can help operators on the ground deploy resources to fight it. But for this information to be useful in real time, it must be downlinked within minutes of its collection. The existing infrastructure incurs delays that make most currently collected data non-actionable for firefighters. So the first problem Northwood wants to solve is persistence, with a network of ground stations around the world that would allow operators to continually connect with their satellites.

After persistence, the next problem faced by satellite operators is constraints on bandwidth. Satellites collect reams of data in orbit and must either process it on board or throw a lot of it away.

Mendler said that within three years, Northwood aims to build a shared network capable of linking to 500 spacecraft at a time. This may not sound like a big deal, but it’s larger than every commercially available shared ground network and the US government’s Satellite Control Network combined. And these tracking centers took decades to build. Each of Northwood’s sites, spread across six continents, is intended to download far more data than can be brought down on commercial networks today, the equivalent of streaming tens of thousands of Blu-ray discs from space concurrently.

“Our job is to figure out how to most efficiently deliver those capabilities,” Mendler said. “We’re asking, how can we reliably deliver a new standard of connectivity to the industry, at a viable price point?”

With these aims in mind, Mendler and Cleverly got serious about their startup in the fall of 2023.

Frankie goes from Hollywood

Over the previous decade, SpaceX had revolutionized the rocket industry, and a second generation of private launch companies was maturing. Some, like Rocket Lab, were succeeding. Others, such as Virgin Orbit, had gone bankrupt. There were important lessons in these ashes for a space startup CEO.

Among the most critical for Mendler was keeping costs low. Virgin Orbit’s payroll had approached 700 people to support a rocket capable of limited revenue. That kind of payroll growth was a ticket to insolvency. She also recognized SpaceX’s relentless push to build things in-house and rapidly prototype hardware through iterative design as key to the company’s success.

By the end of 2023, Mendler was raising the company’s initial funding, a seed round worth $6.3 million. Northwood emerged from “stealth mode” in February 2024 and set about hiring a small team. Early that summer, it began pulling together components to build Frankie, a prototype for the team’s first product—modular phased-array antennas. Northwood put Frankie together in four months.

“Our goal was to build things quickly,” Mendler said. “That’s why the first thing we did after raising our seed round was to build something and put it in the field. We wanted to show people it was real.”

Unlike a parabolic dish antenna—think a DirecTV satellite dish or the large ground-based antennas that Ellie Arroway uses in Contact—phased-array antennas are electrically steerable. Instead of needing to point directly at their target to collect a signal, phased-array antennas produce a beam of radio waves that can “point” in different directions without moving the antenna. The technology is decades old, but its use in commercial applications has been limited because it’s more difficult to work with than parabolic dishes. In theory, however, phased array antennas should let Northwood build more capable ground stations, pulling down vastly more data within a smaller footprint. In business terms, the technology is “scalable.”

But before a technology can scale, it must work.

In late September 2024, the company’s six engineers, a business development director, and Mendler packed Frankie into a truck and sent it rolling off to the Dakotas. They soon followed, flying commercial to Denver and then into Devils Lake Regional Airport. On the first day of October, the party checked into Spirit Lake Casino.

That night, they drove out to a rural site owned by Planet Labs, nearly an hour away, that has a small network station to communicate with its Earth-imaging satellites. This site consisted of two large antennas, a small operations shed for the networking equipment, and a temporary trailer. The truck hauling Frankie arrived at 2 am local time.

The company’s antenna, “Frankie,” arrives early on October 2 and the team begins to unload it.

Credit: Bridgit Mendler

The company’s antenna, “Frankie,” arrives early on October 2 and the team begins to unload it. Credit: Bridgit Mendler

Before sunrise, as the team completed setup, Mendler went into the nearest town, Maddock. The village has one main establishment, Harriman’s Restaurant & Bobcat Bar. The protean facility also serves as an opera house, community library, and meeting place. When Mendler went to the restaurant’s counter and ordered eight breakfast burritos, she attracted notice. But the locals were polite.

Returning to her team, they gathered in the small Planet Labs trailer on the windswept site. There were no lights, so they carried their portable floodlights inside. The space lacked room for chairs, so they huddled around one another in what they affectionately began referring to as the “food closet.” At least it kept them out of the wind.

The team had some success on the first morning, as Frankie communicated with a SkySat flying overhead, a Planet satellite a little larger than a mini refrigerator. First contact came at 7: 34 am, and they had some additional successes throughout the day. But communication remained one-way, from the ground to space. For satellite telemetry, tracking, and command—TT&C in industry parlance—they needed to close the loop. But Frankie could not receive a clear X Band signal from space; it was coming in too weak.

“While we could command the satellite, we could not receive the acknowledgments of the command,” Mendler said.

The best satellite passes were clumped during the overnight hours. So over the next few days, the team napped in their rental cars, waiting to see if Frankie could hear satellites calling home. But as the days ticked by, they had no luck. Time was running out.

Solving their RF problems

As the Northwood engineers troubleshot the problem with low signal power, they realized that with some minor changes, they could probably boost the signal. But this would require reconfiguring and calibrating Frankie.

The team scrambled to make these changes on the afternoon of October 4, before four passes in a row that night starting at 3 am. This was one of their last, best chances to make things work. After implementing the fix, the bedraggled Northwood team ate a muted dinner at their casino hotel before heading back out to the ground station. There, they waited in nervous silence for the first pass of the night.

When the initial satellite passed overhead, the space-to-ground power finally reached the requisite level. But Northwood could not decode the message due to a coaxial cable being plugged into the wrong port.

Then they missed the second pass because an inline amplifier was mistakenly switched off.

The third satellite pass failed due to a misrouted switch in Planet’s radio-frequency equipment.

So they were down to the final pass. But this time, there were no technical snafus. The peak of the signal came in clean and, to the team’s delight, with an even higher signal-to-noise ratio than anticipated. Frankie had done it. High fives and hugs all around. The small team crashed that morning before successfully repeating the process the next day.

After that, it was time to celebrate, Dakota style. The team decamped to Harriman’s, where Mendler’s new friend Jim Walter, the proprietor, served them shots. After a while, he disappeared into the basement and returned with Bobcat Bar T-shirts he wanted them to have as mementos. Later that night, the Northwood team played blackjack at the casino and lost their money at the slot machines.

Yet in the bigger picture, they had gambled and won. Mendler wanted to build fast, to show the world that her company had technical chops. They had thrown Frankie together and rushed headlong into the rough-and-tumble countryside, plugged in the antenna, and waited to see what happened. A lot of bad things could have happened, but instead, the team hit the jackpot.

“We were able to go from the design to actually build and deploy in that four-month time period,” Mendler said. “That resulted in a lot of different customers knocking down our door and helping to shape requirements for this next version of the system that we’re going to be able to start demoing soon. So in half a year, we radically revised our product, and we will begin actually putting them out in the field and operating this year. Time is very much at the forefront of our mind.”

Can ground stations fly high?

The fundamental premise behind Northwood is that a bottleneck constrains the ability to bring down data from space and that a lean, new-space approach can disrupt the existing industry. But is this the case?

“The demand for ground-based connectivity is rising,” said Caleb Henry, director of research at Quilty Space. “And your satellites are only as effective as your gateways.”

This trend is being driven not only by the rise of satellites in general but also by higher-resolution imaging satellites like Planet’s Pelican satellites or BlackSky’s Gen-3 satellites. There has also been a corresponding increase in the volume of data from synthetic aperture radar satellites, Henry said. Recent regulatory filings, such as this one in the United Kingdom, underscore the notion that ongoing data bottlenecks persist. However, Henry said it’s not clear whether this growth in data will be linear or exponential.

The idea of switching from large, single-dish antennas to phased arrays is not new. This is partly because there are questions about how expensive it would be to build large, capable phased-array antennas to talk to satellites hundreds of miles away—and how energy intensive this would be.

Commercial satellite operators currently have a limited number of options for communicating with the ground. A Norwegian company, Kongsberg Satellite Services (or KSAT), has the largest network of ground stations. Other players include Swedish Space Systems, Leaf Space in Italy, Atlas Space Operations in Michigan, and more. Some of these companies have experimented with phased-array antennas, Henry said, but no one has made the technology the backbone of its network.

By far the largest data operator in low-Earth orbit, SpaceX, chose dish-based gateways for its ground stations around the world that talk to Starlink satellites. (The individual user terminals are phased-array antennas, however.)

Like reuse in the launch industry, a switch to phased-array antennas is potentially disruptive. Large dishes can only communicate with a single satellite at a time, whereas phased-array antennas can make multiple connections. This allows an operator to pack much more power into a smaller footprint on the ground. But as with SpaceX and reuse, the existing ground station operators seem to be waiting to see if anyone else can pull it off.

“The industry just has not trusted that the level of disruption phased-array antennas can bring is worth the cost,” Henry said. “Reusability wasn’t trusted, either, because no one could do it affordably and effectively.”

So can Northwood Space do it? One of the very first investors in SpaceX, the Founders Fund, believes so. It participated in the seed round for Northwood and again in a Series A round, valued at $30 million, which closed in April.

When Mendler first approached the fund about 18 months ago, it was an easy decision, said Delian Asparouhov, a partner at the fund.

“We probably only discussed it for about 15 minutes,” Asparouhov said. “Bridgit was perfect for this. I think we met on a Tuesday and had a term sheet signed on a Thursday night. It happened that fast.”

The Founders Fund had been studying the idea for a while. Rocket, satellites, and reentry vehicles get all of the attention, but Asparouhov said there is a huge need for ground systems and that phased-array technology has the ability to unlock a future of abundant data from space. His own company, Varda Space, is only able to communicate with its spacecraft for about 35 minutes every two hours. Varda vehicles conduct autonomous manufacturing in space, and the ability to have continuous data from its vehicles about their health and the work on board would be incredibly helpful.

“Infrastructure is not sexy,” Asparouhov said. “We needed someone who could turn that into a compelling story.”

Mendler, with her novel background, was the person. But she’s not just an eloquent spokesperson for the industry, he said. Building a company is hard, from finding facilities to navigating legal work to staffing up. Mendler appears to be acing these tasks. “Run through the LinkedIn of the team she’s recruited,” he said. “You’ll see that she’s knocked it out of the park.”

Ready or not

At Northwood, Mendler has entered a vastly different world from the entertainment industry or academia. She consults with fast-talking venture capitalists, foreign regulators, lawyers, rocket scientists, and occasionally the odd space journalist. It’s a challenging environment usually occupied by hotshot engineers—often arrogant, hard-charging men.

Mendler stands out in this setting. But her life has always been about thriving in tough environments.

Whatever happens, she has already achieved success in one important way. As an actor and singer, Mendler often felt as though she was dancing to someone else’s tune. No longer. At Northwood, she holds the microphone, but she is also a director and producer. If she fails—and let’s be honest, most new space companies do fail—it will be on her own terms.

Several weeks ago, Mendler was sitting at home, watching the movie Meet the Robinsons with her 6-year-old son. One of the main themes of the animated Disney film is that one should “keep moving forward” in life and that it’s possible to build a future that is optimistic for humanity—say, Star Trek rather than The Terminator or The Matrix.

“It shows you what the future could look like,” Mendler said of the movie. “And it gave me a little sad feeling, because it is so optimistic and beautiful. I think people can get discouraged by a dystopian outlook about what the future can look like. We need to remember we can build something positive.”

She will try to do just that.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

She was a Disney star with platinum records, but Bridgit Mendler gave it up to change the world Read More »

ars-live-recap:-where-does-nasa-go-from-here?

Ars Live recap: Where does NASA go from here?

Our discussion with Reuters’ Joey Roulette and WaPo’s Christian Davenport. Click here for transcript.

Recently, during the first Ars Live event of this year, two noted space journalists joined Ars space editor Eric Berger for a discussion of NASA’s future in the age of the second Trump administration.

During the hour-long discussion, Christian Davenport of The Washington Post and Joey Roulette of Reuters covered a range of issues, from uncertainty at the space agency to the likelihood of NASA sponsoring a humans-to-Mars mission any time soon.

This is an especially frenetic time in space policy. In the days since this video was recorded, President Trump canceled the longstanding nomination of private astronaut Jared Isaacman to become NASA administrator—at the time we recorded the video, Senate approval was assured, and a vote was imminent. Then Trump and SpaceX founder Elon Musk had a serious falling out, with the two trading nasty words on social media and culminating in Musk threatening to end Dragon spacecraft missions before pulling back.

“It’s a fascinating time right now to be a space journalist, to do what we get to do, to write about what we get to write about at this time,” Davenport said. “Everyone says, you know, journalism, it’s a first rough draft of history. I believe that to be true. I think people are gonna look back at this time, 10, 20, 30 years from now, as a seminal moment.”

Ars Live recap: Where does NASA go from here? Read More »

a-long-shot-plan-to-mine-the-moon-comes-a-little-closer-to-reality

A long-shot plan to mine the Moon comes a little closer to reality

The road ahead

Meyerson said the company’s current plan is to fly a prospecting mission in 2027, a payload of less than 100 kg, likely on a commercial lander that is part of NASA’s Commercial Lunar Payload Services program. Two years later, the company seeks to fly a pilot plant. Meyerson said the size of this plant will depend on the launch capability available (i.e., if Starship is flying to the Moon, they’ll go big, and smaller if not).

Following this, Interlune is targeting 2032 for the launch of a solar-powered operating plant, which would include five mobile harvesters. The operation would also be able to return material mined to Earth. The total mass for this equipment would be about 40 metric tons, which could fly on a single Starship or two New Glenn Mk 2 landers. This would, understandably, be highly ambitious and capital-intensive. After raising $15 million last year, Meyerson said Interlune is planning a second fundraising round that should begin soon.

There are some outside factors that may be beneficial for Interlune. One is that China has a clear and demonstrated interest in sending humans to the Moon and has already sent rovers to explore for helium-3 resources. Moreover, with the exit of Jared Isaacman as a nominee to lead NASA, the Trump administration is likely to put someone in the position who is more focused on lunar activities. One candidate, a retired Air Force General named Steve Kwast, is a huge proponent of mining helium-3.

Interlune has a compelling story, as there are almost no other lunar businesses focused solely on commercial activities that will drive value from mining the lunar surface. In that sense, they could be a linchpin of a lunar economy. However, they have a long way to go, and a lot of lunar regolith to plow through, before they start delivering for customers.

A long-shot plan to mine the Moon comes a little closer to reality Read More »

a-japanese-lander-crashed-on-the-moon-after-losing-track-of-its-location

A Japanese lander crashed on the Moon after losing track of its location


“It’s not impossible, so how do we overcome our hurdles?”

Takeshi Hakamada, founder and CEO of ispace, attends a press conference in Tokyo on June 6, 2025, to announce the outcome of his company’s second lunar landing attempt. Credit: Kazuhiro Nogi/AFP via Getty Images

A robotic lander developed by a Japanese company named ispace plummeted to the Moon’s surface Thursday, destroying a small rover and several experiments intended to demonstrate how future missions could mine and harvest lunar resources.

Ground teams at ispace’s mission control center in Tokyo lost contact with the Resilience lunar lander moments before it was supposed to touch down in a region called Mare Frigoris, or the Sea of Cold, a basaltic plain in the Moon’s northern hemisphere.

A few hours later, ispace officials confirmed what many observers suspected. The mission was lost. It’s the second time ispace has failed to land on the Moon in as many tries.

“We wanted to make Mission 2 a success, but unfortunately we haven’t been able to land,” said Takeshi Hakamada, the company’s founder and CEO.

Ryo Ujiie, ispace’s chief technology officer, said the final data received from the Resilience lander—assuming it was correct—showed it at an altitude of approximately 630 feet (192 meters) and descending too fast for a safe landing. “The deceleration was not enough. That was a fact,” Ujiie told reporters in a press conference. “We failed to land, and we have to analyze the reasons.”

The company said in a press release that a laser rangefinder used to measure the lander’s altitude “experienced delays in obtaining valid measurement values.” The downward-facing laser fires light pulses toward the Moon during descent, and clocks the time it takes to receive a reflection. This time delay at light speed tells the lander’s guidance system how far it is above the lunar surface. But something went wrong in the altitude measurement system on Thursday.

“As a result, the lander was unable to decelerate sufficiently to reach the required speed for the planned lunar landing,” ispace said. “Based on these circumstances, it is currently assumed that the lander likely performed a hard landing on the lunar surface.”

Controllers sent a command to reboot the lander in hopes of reestablishing communication, but the Resilience spacecraft remained silent.

“Given that there is currently no prospect of a successful lunar landing, our top priority is to swiftly analyze the telemetry data we have obtained thus far and work diligently to identify the cause,” Hakamada said in a statement. “We will strive to restore trust by providing a report of the findings to our shareholders, payload customers, Hakuto-R partners, government officials, and all supporters of ispace.”

Overcoming obstacles

The Hakuto name harkens back to ispace’s origin in 2010 as a contender for the Google Lunar X-Prize, a sweepstakes that offered a $20 million grand prize to the first privately funded team to put a lander on the Moon. Hakamada’s group was called Hakuto, which means “white rabbit” in Japanese. The prize shut down in 2018 without a winner, leading some of the teams to dissolve or find new purpose. Hakamada stayed the course, raised more funding, and rebooted the program under the name Hakuto-R.

It’s a story of resilience, hence the name of ispace’s second lunar lander. The mission made it closer to the Moon than the ispace’s first landing attempt in 2023, but Thursday’s failure is a blow to Hakamada’s project.

“As a fact, we tried twice and we haven’t been able to land on the Moon,” Hakamada said through an interpreter. “So we have to say it’s hard to land on the Moon, technically. We know it’s not easy. It’s not something that everyone can do. We know it’s hard, but the important point is it’s not impossible. The US private companies have succeeded in landing, and also JAXA in Japan has succeeded in landing, so it’s not impossible. So how do we overcome our hurdles?”

The Resilience lander and Tenacious rover, seen mounted near the top of the spacecraft, inside a test facility at the Tsukuba Space Center in Tsukuba, Ibaraki Prefecture, on Thursday, Sept. 12, 2024. Credit: Toru Hanai/Bloomberg via Getty Images

In April 2023, ispace’s first lander crashed on the Moon due to a similar altitude measurement problem. The spacecraft thought it was on the surface of the Moon, but was actually firing its engine to hover at an altitude of 3 miles (5 kilometers). The spacecraft ran out of fuel and went into a free fall before impacting the Moon.

Engineers blamed software as the most likely reason for the altitude-measurement problem. During descent, ispace’s lander passed over a 10,000-foot-tall (3,000-meter) cliff, and the spacecraft’s computer interpreted the sudden altitude change as erroneous.

Ujiie, who leads ispace’s technical teams, said the failure mode Thursday was “similar” to that of the first mission two years ago. But at least in ispace’s preliminary data reviews, engineers saw different behavior from the Resilience lander, which flew with a new type of laser rangefinder after ispace’s previous supplier stopped producing the device.

“From Mission 1 to Mission 2, we improved the software,” Ujiie said. “Also, we improved how to approach the landing site… We see different phenomena from Mission 1, so we have to do more analysis to give you any concrete answers.”

If ispace landed smoothly on Thursday, the Resilience spacecraft would have deployed a small rover developed by ispace’s European subsidiary. The rover was partially funded by the Luxembourg Space Agency with support from the European Space Agency. It carried a shovel to scoop up a small amount of lunar soil and a camera to take a photo of the sample. NASA had a contract with ispace to purchase the lunar soil in a symbolic proof of concept to show how the government might acquire material from commercial mining companies in the future.

The lander also carried a water electrolyzer experiment to demonstrate technologies that could split water molecules into hydrogen and oxygen, critical resources for a future Moon base. Other payloads aboard the Resilience spacecraft included cameras, a food production experiment, a radiation monitor, and a Swedish art project called “MoonHouse.”

The spacecraft chassis used for ispace’s first two landing attempts was about the size of a compact car, with a mass of about 1 metric ton (2,200 pounds) when fully fueled. The company’s third landing attempt is scheduled for 2027 with a larger lander. Next time, ispace will fly to the Moon in partnership between the company’s US subsidiary and Draper Laboratory, which has a contract with NASA to deliver experiments to the lunar surface.

Track record

The Resilience lander launched in January on top of a SpaceX Falcon 9 rocket, riding to space in tandem with a commercial Moon lander named Blue Ghost from Firefly Aerospace. Firefly’s lander took a more direct journey to the Moon and achieved a soft landing on March 2. Blue Ghost operated on the lunar surface for two weeks and completed all of its objectives.

The trajectory of ispace’s lander was slower, following a lower-energy, more fuel-efficient path to the Moon before entering lunar orbit last month. Once in orbit, the lander made a few more course corrections to line up with its landing site, then commenced its final descent on Thursday.

Thursday’s landing attempt was the seventh time a privately developed Moon lander tried to conduct a controlled touchdown on the lunar surface.

Two Texas-based companies have had the most success. One of them, Houston-based Intuitive Machines, landed its Odysseus spacecraft on the Moon in February 2024, marking the first time a commercial lander reached the lunar surface intact. But the lander tipped over after touchdown, cutting its mission short after achieving some limited objectives. A second Intuitive Machines lander reached the Moon in one piece in March of this year, but it also fell over and didn’t last as long as the company’s first mission.

Firefly’s Blue Ghost operated for two weeks after reaching the lunar surface, accomplishing all of its objectives and becoming the first fully successful privately owned spacecraft to land and operate on the Moon.

Intuitive Machines, Firefly, and a third company—Astrobotic Technology—have launched their lunar missions under contract with a NASA program aimed at fostering a commercial marketplace for transportation to the Moon. Astrobotic’s first lander failed soon after its departure from Earth. The first two missions launched by ispace were almost fully private ventures, with limited participation from the Japanese space agency, Luxembourg, and NASA.

The Earth looms over the Moon’s horizon in this image from lunar orbit captured on May 27, 2025, by ispace’s Resilience lander. Credit: ispace

Commercial travel to the Moon only began in 2019, so there’s not much of a track record to judge the industry’s prospects. When NASA started signing contracts for commercial lunar missions, the then-chief of the agency’s science vision, Thomas Zurbuchen, estimated the initial landing attempts would have a 50-50 chance of success. On the whole, NASA’s experience with Intuitive Machines, Firefly, and Astrobotic isn’t too far off from Zurbuchen’s estimate, with one full success and a couple of partial successes.

The commercial track record worsens if you include private missions from ispace and Israel’s Beresheet lander.

But ispace and Hakamada haven’t given up on the dream. The company’s third mission will launch under the umbrella of the same NASA program that contracted with Intuitive Machines, Firefly, and Astrobotic. Hakamada cited the achievements of Firefly and Intuitive Machines as evidence that the commercial model for lunar missions is a valid one.

“The ones that have the landers, there are two companies I mentioned. Also, Blue Origin maybe coming up. Also, ispace is a possibility,” Hakamada said. “So, very few companies. We would like to catch up as soon as possible.”

It’s too early to know how the failure on Thursday might impact ispace’s next mission with Draper and NASA.

“I have to admit that we are behind,” said Jumpei Nozaki, director and chief financial officer at ispace. “But we do not really think we are behind from the leading group yet. It’s too early to decide that. The players in the world that can send landers to the Moon are very few, so we still have some competitive edge.”

“Honestly, there were some times I almost cried, but I need to lead this company, and I need to have a strong will to move forward, so it’s not time for me to cry,” Hakamada said.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

A Japanese lander crashed on the Moon after losing track of its location Read More »

rocket-report:-spacex’s-500th-falcon-launch;-why-did-uk’s-reaction-engines-fail?

Rocket Report: SpaceX’s 500th Falcon launch; why did UK’s Reaction Engines fail?


SpaceX’s rockets make a lot more noise, but the machinations of Texas’ newest city are underway.

Prefabricated homes painted black, white, and gray are set against the backdrop of SpaceX’s Starship rocket factory at Starbase, Texas. Credit: Sergio Flores/AFP via Getty Images

Welcome to Edition 7.47 of the Rocket Report! Let’s hope not, but the quarrel between President Donald Trump and Elon Musk may be remembered as “Black Thursday” for the US space program. A simmering disagreement over Trump’s signature “One Big Beautiful Bill” coursing its way through Congress erupted into public view, with two of the most powerful Americans trading insults and threats on social media. Trump suggested the government should terminate “Elon’s governmental contracts and subsidies.” Musk responded with a post saying SpaceX will begin decommissioning the Dragon spacecraft used to transport crew and cargo to the International Space Station. This could go a number of ways, but it’s hard to think anything good will come of it.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Blue Origin aces suborbital space shot. Blue Origin, the space company founded and owned by Jeff Bezos, launched six people to the edge of space Saturday, May 31, from Bezos’ ranch in West Texas, CBS News reports. A hydrogen-fueled New Shepard booster propelled a crew capsule, equipped with the largest windows of any operational spaceship, to an altitude of nearly 65 miles (105 kilometers), just above the internationally recognized boundary between the discernible atmosphere and space, before beginning the descent to landing. The passengers included three Americans—Aymette Medina Jorge, Gretchen Green, and Paul Jeris—along with Canadian Jesse Williams, New Zealand’s Mark Rocket, and Panamanian Jaime Alemán, who served as his country’s ambassador to the United States.

If you missed it … You wouldn’t be alone. This was the 32nd flight of Blue Origin’s New Shepard rocket, and the company’s 12th human flight. From a technical perspective, these flights aren’t breaking any new ground in human spaceflight or rocketry. However, each flight provides an opportunity for wealthy or well-connected passengers to view Earth from a perspective only about 700 people have seen before. That’s really cool, but most of these launches are no longer newsworthy, and it takes a devoted fan of spaceflight to tune in to a New Shepard flight on a summertime Saturday morning. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Momentum for Amentum. The US Space Force awarded Jacobs Technology a contract worth up to $4 billion over 10 years to provide engineering and technical services at the nation’s primary space launch ranges, as the military seeks to modernize aging infrastructure and boost capacity amid a surge in commercial space activity, Space News reports. Jacobs Technology is now part of Amentum, a defense contractor based in Chantilly, Virginia. Amentum merged with Jacobs in September 2024. The so-called “Space Force Range Contract” covers maintenance, sustainment, systems engineering and integration services for the Eastern and Western ranges until 2035. The Eastern Range operates from Patrick Space Force Base in Florida, while the Western Range is based at Vandenberg Space Force Base in California.

Picking from the menu … The contract represents a significant shift in how space launch infrastructure is funded. Under the new arrangement, commercial launch service providers—which now account for the majority of launches at both ranges—can request services or upgrades and pay for them directly, rather than having the government bear the costs upfront. This arrangement would create a more market-driven approach to range operations and potentially accelerate modernization. “Historically, the government has fronted these costs,” Brig. Gen. Kristin Panzenhagen, Space Launch Delta 45 Commander and Eastern Range Director, said June 3 in a news release. “The ability of our commercial partners to directly fund their own task order will lessen the financial and administrative burden on the government and is in line with congressionally mandated financial improvement and audit readiness requirements.”

Impulse Space rakes in more cash. This week, an in-space propulsion company, Impulse Space, announced that it had raised a significant amount of money, $300 million, Ars reports. This follows a fundraising round just last year in which the Southern California-based company raised $150 million. This is one of the largest capital raises in space in a while, especially for a non-launch company. Founded by Tom Mueller, a former propulsion guru at SpaceX, Impulse Space has test-flown an orbital maneuvering vehicle called Mira on two flights over the last couple of years. The company is developing a larger vehicle, named Helios, that could meaningfully improve the ability of SpaceX’s Falcon 9 and Falcon Heavy to transport large payloads to the Moon, Mars, and other destinations in the Solar System.

Reacting to the market … The Mira vehicle was originally intended to provide “last-mile” services for spacecraft launched as part of rideshare missions. “The reality is the market for that is not very good,” said Eric Romo, the company’s CEO. Instead, Impulse Space found interest from the Space Force to use Mira as an agile platform for hosting electronic warfare payloads and other military instrumentation in orbit. “Mira wasn’t necessarily designed out of the gate for that, but what we found out after we flew it successfully was, the Space Force said, ‘Hey, we know what that thing’s for,'” Romo said. Helios is a larger beast, with an engine capable of producing 15,000 pounds of thrust and the ability to move a multi-ton payload from low-Earth orbit to geostationary space in less than a day. (submitted by EllPeaTea)

Falcon rockets surpass 500 flights. SpaceX was back at the launch pad for a midweek flight from Vandenberg Space Force Base in California. This particular flight, designated Starlink 11-22, marked the company’s 500th orbital launch attempt with a Falcon rocket, including Falcon 1, Falcon 9, and Falcon Heavy, Spaceflight Now reports. This milestone coincided with the 15th anniversary of the first Falcon 9 launch on June 4, 2010. The day before, SpaceX launched the 500th Falcon rocket overall, counting a single suborbital flight in 2020 that tested the Dragon spacecraft’s abort system. The launch on Wednesday from California was the 68th Falcon 9 launch of the year.

Chasing Atlas … The soon-to-be-retired Atlas rocket holds the record for the most-flown family of space launchers in the United States, with 684 launches to date, beginning with Atlas ICBMs in the Cold War to the Atlas V rocket flying today. In reality, however, the Atlas V shares virtually nothing in common with the Atlas ICBM, other than its name. The Atlas V has new engines, more modern computers, and a redesigned booster stage that ended the line of pressure-stabilized “balloon tanks” that flew on Atlas rockets from 1957 until 2005. The Falcon 1, Falcon 9, and Falcon Heavy share more heritage, all using variants of SpaceX’s Merlin engine. If you consider the Atlas rocket as the US record-holder for most space launches, SpaceX’s Falcon family is on pace to reach 684 flights before the end of 2026.

SpaceX delivers again for GPS. The Space Force successfully sent its latest GPS III satellite to orbit Friday, May 30, demonstrating the ability to prepare and launch a military spacecraft on condensed timelines, Defense News reports. The satellite flew on a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Base in Florida. GPS III, built by Lockheed Martin, is the latest version of the navigation and timing system and is designed to provide improved anti-jamming capabilities. It will broadcast additional military and civilian signals.

More anti-jamming capability … The launch was the second in a series of Rapid Response Trailblazer missions the Space Force is running to test whether it can quickly launch high-value satellites in response to national security needs. The goal is to condense a process that can take up to two years down to a handful of months. The first mission, which flew in December, reduced the time between launch notification and lift off to around five months—and the May 30 mission shortened it even further, to around 90 days. In addition to demonstrating the launch could be done on an accelerated timeline, Space Force officials were motivated to swap this satellite from United Launch Alliance’s long-delayed Vulcan rocket to SpaceX’s Falcon 9 in order to add more tech to the GPS constellation to counter jamming and spoofing. (submitted by EllPeaTea)

An autopsy on Reaction Engines. An article published by the BBC this week recounts some of the backstory behind the bankruptcy of Reaction Engines, a British company that labored for 35 years to develop a revolutionary air-breathing rocket engine. According to the vision of the company’s leaders, the new engine, called SABRE, could have powered a single-stage-to-orbit spaceplane or hypersonic vehicles within the atmosphere. If an engine like SABRE could ever be mastered, it could usher in a new era of spaceplanes that can take off and land horizontally on a runway, instead of launching vertically like a rocket.

A little too quixotic … But Reaction Engines started in an era too soon for true commercial spaceflight and couldn’t convince enough venture capital investors that the idea could compete with the likes of SpaceX. Instead, the company secured a handful of investments from large aerospace companies like Boeing, BAE Systems, and Rolls-Royce. This money allowed Reaction Engines to grow to a staff of approximately 200 employees and kept it afloat until last October, when the company went into administration and laid off its workforce. “A few people were in tears,” Richard Varvill, the company’s chief engineer, told the BBC. “A lot of them were shocked and upset because they’d hoped we could pull it off right up to the end.” It was galling for Varvill “because we were turning it around with an improved engine. Just as we were getting close to succeeding, we failed. That’s a uniquely British characteristic.” (submitted by ShuggyCoUk)

Draconian implications for Trump’s budget. New details of the Trump administration’s plans for NASA, released Friday, May 30, revealed the White House’s desire to end the development of an experimental nuclear thermal rocket engine that could have shown a new way of exploring the Solar System, Ars reports. The budget proposal’s impacts on human spaceflight and space science have been widely reported, but Trump’s plan would cut NASA’s space technology budget in half. One of the victims would be DRACO, a partnership with DARPA to develop and test the first nuclear thermal rocket engine in space.

But wait, there’s more … The budget proposal not only cancels DRACO, but it also zeros out funding for all of NASA’s nuclear propulsion projects. Proponents of nuclear propulsion say it offers several key advantages for sending heavy cargo and humans to deep space destinations, like Mars. “This budget provides no funding for Nuclear Thermal Propulsion and Nuclear Electric Propulsion projects,” officials wrote in the NASA budget request. “These efforts are costly investments, would take many years to develop, and have not been identified as the propulsion mode for deep space missions. The nuclear propulsion projects are terminated to achieve cost savings and because there are other nearer-term propulsion alternatives for Mars transit.” Trump’s budget request isn’t final. Both Republican-controlled houses of Congress will write their own versions of the NASA budget, which must be reconciled before going to the White House for President Trump’s signature.

Blue Origin CEO says government should get out of the launch business. Eighteen months after leaving his job as a vice president at Amazon to take over as Blue Origin’s chief executive, Dave Limp has some thoughts on how commercial companies and government agencies like NASA should explore the Solar System together. First, the government should leave launching things into space to private industry. “I think commercial folks can worry about the infrastructure,” he said. “We can do the launch. We can build the satellite buses that can get you to Mars much more frequently, that don’t cost billions of dollars. We can take a zero, and over time, maybe two zeros off of that. And if the governments around the world leave that to the commercial side, then there are a lot more resources that are freed up for the science side, for the national prestige side, and those types of things.”

Do the exotic … While commercial companies should drive the proverbial bus into the Solar System, NASA should get back to its roots in research and exploration, Limp said. “I would say, and it might be a little provocative, let’s have those smart brains look on the forward-thinking types of things, the really edge of science, planning the really exotic missions, figuring out how to get to planetary bodies we haven’t gotten to before, and staying there.” But Limp highlighted one area where he thinks government investment is needed: the Moon. He said there’s currently no commercial business case for sending people to the Moon, and the government should continue backing those efforts.

Hurdles ahead for Rocket Cargo. The Center for Biological Diversity is suing the military for details on a proposal to build a rocket test site in a remote wildlife refuge less than 900 miles from Hawaiʻi Island, Hawaiʻi Public Radio reports. The Air Force announced in March that it planned to prepare an environmental assessment for the construction and operation of two landing pads on Johnston Atoll to test the viability of using rockets to deliver military cargo loads. While the announcement didn’t mention SpaceX, that company’s Starship rocket is on contract with the Air Force Research Laboratory to work on delivering cargo anywhere in the world within an hour. Now, several conservationists have spoken out against the proposal, pointing out that Johnston is an important habitat for birds and marine species.

Scarred territory … For nearly a century, Johnston Atoll has served dual roles as a wildlife refuge and a base for US military operations, including as a nuclear test site between 1958 and 1963. In March, the Air Force said it anticipated an environmental assessment for its plans on Johnston Atoll would be available for public review in early April. So far, it has not been released. The Center for Biological Diversity filed a Freedom of Information Act request about the project. They say a determination on their request was due by May 19, but they have not received a response. The center filed a lawsuit last week to compel the military to rule on their request and release information about the project.

Getting down to business at Starbase. SpaceX’s rockets make a lot of noise at Starbase, but the machinations of setting up Texas’ newest city are in motion, too. After months of planning, SpaceX launched the city of Starbase on May 29 with its first public meeting chaired by Mayor Robert Peden and the City Commission at The Hub, a building owned by SpaceX, ValleyCentral.com reports. During the meeting, which lasted about 80 minutes, they hired a city administrator, approved standard regulations for new construction, and created a committee to guide the community’s long-term development. Voters approved the creation of Starbase on May 3, incorporating territory around SpaceX’s remote rocket factory and launch site near the US-Mexico border. SpaceX owns most of the land in Starbase and employs nearly everyone in the tiny town, including the mayor.

Property rights and zoning … “The new city’s leaders have told landowners they plan to introduce land use rules that could result in changes for some residents,” KUT reports. In a letter, Starbase’s first city administrator, Kent Myers, warned local landowners that they may lose the right to continue using their property for its current use under the city’s new zoning plan. “Our goal is to ensure that the zoning plan reflects the City’s vision for balanced growth, protecting critical economic drivers, ensuring public safety, and preserving green spaces,” the letter, dated May 21, reads. This is a normal process when a city creates new zoning rules, and a new city is required by state law to notify landowners—most of which are SpaceX or its employees—of potential zoning changes so they can ask questions in a public setting. A public meeting to discuss the zoning ordinance at Starbase is scheduled for June 23.

Next three launches

June 7: Falcon 9 | SXM-10| Cape Canaveral Space Force Station, Florida | 03: 19 UTC

June 8: Falcon 9 | Starlink 15-8 | Vandenberg Space Force Base, California | 13: 34 UTC

June 10: Falcon 9 | Axiom Mission 4 | Kennedy Space Center, Florida | 12: 22 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX’s 500th Falcon launch; why did UK’s Reaction Engines fail? Read More »

senate-response-to-white-house-budget-for-nasa:-keep-sls,-nix-science

Senate response to White House budget for NASA: Keep SLS, nix science

This legislation, the committee said in a messaging document, “Dedicates almost $10 billion to win the new space race with China and ensure America dominates space. Makes targeted, critical investments in Mars-forward technology, Artemis Missions and Moon to Mars program, and the International Space Station.”

The reality is that it signals that Republicans in the US Senate are not particularly interested in sending humans to Mars, probably are OK with the majority of cuts to science programs at NASA, and want to keep the status quo on Artemis, including the Space Launch System rocket.

Where things go from here

It is difficult to forecast where US space policy will go from here. The very public breakup between President Trump and SpaceX founder Elon Musk on Thursday significantly complicates the equation. At one point, Trump and Musk were both championing sending humans to Mars, but Musk is gone from the administration, and Trump may abandon that idea due to their rift.

For what it’s worth, a political appointee in NASA Communications said on Thursday that the president’s vision for space—Trump spoke of landing humans on Mars frequently during his campaign speeches—will continue to be implemented.

“NASA will continue to execute upon the President’s vision for the future of space,” NASA’s press secretary, Bethany Stevens, said on X. “We will continue to work with our industry partners to ensure the President’s objectives in space are met.”

Congress, it seems, may be heading in a different direction.

Senate response to White House budget for NASA: Keep SLS, nix science Read More »

jared-isaacman-speaks-out,-and-it’s-clear-that-nasa-lost-a-visionary-leader

Jared Isaacman speaks out, and it’s clear that NASA lost a visionary leader

“There’s enough hardware now to fly a couple of missions and make sure you beat China back to the Moon,” he said. “But you can’t be stuck on this forever. This is literally the equivalency, by the way, of taking P-51 Mustangs [a fighter aircraft] from World War II and using them in Desert Storm, because we got to keep the plants open.
And that obviously makes no logical sense whatsoever.”

On his de-nomination

Isaacman said he is, politically, a moderate, although he leans right. He supports Trump’s desire to cut alleged waste and fraud from the US government, and that is what he intended to do at NASA. He also did not blame Trump for his departure, saying that a president makes a thousand decisions a day, often with a few seconds of information.

He also said he enjoyed the Senate confirmation process, which allowed him to candidly discuss his positions on NASA with individual US senators.

As for why he was removed, Isaacman said the following: “I had a pretty good idea, I don’t think the timing was much of a coincidence,” he said. “Obviously, there was more than one departure that was covered on that day.”

The phone call to Isaacman saying his nomination was being pulled came the same day that SpaceX founder Elon Musk left his position as a special advisor to the president. Musk had been supportive of Isaacman’s nomination. However, in his time running the Department of Government Efficiency, Musk had made enemies within the US government.

“There were some people who had some axes to grind, and I was a good, visible target,” Isaacman said. “I want to be overwhelmingly clear: I don’t fault the president.”

Although Isaacman did not name anyone, multiple sources have told Ars that it was Sergio Gor, an official in the White House Presidential Personnel Office, who moved against Isaacman after Musk left the White House. Gor was irked by Musk’s failure to consult him and other personnel officials on some decisions.

As a result of what appears to be political pettiness, NASA lost a visionary leader who had the potential to lead the space agency into the middle of the 21st century at a time when an aging agency needs to modernize. If you listen to him, losing that potential in such a way is downright painful. It’s a damn shame.

Jared Isaacman speaks out, and it’s clear that NASA lost a visionary leader Read More »

an-in-space-propulsion-company-just-raised-a-staggering-amount-of-money

An in-space propulsion company just raised a staggering amount of money

Starting small

The company’s initial product was the Mira spacecraft, powered by nitrous oxide and ethane thrusters. It can move payloads up to 300 kg around in space, and for a 100 kg payload, it offers 900 m/s of Delta-V. With Mira, Impulse sought to tackle the problem of mobility once a spacecraft reached orbit.

Mira proved a success almost immediately, with the first vehicle launching in 2023 and operating for a year in space, demonstrating ample mobility before finally depleting its propellant tanks. A second mission, LEO Express-2, launched in January with several hosted payloads and, so far, has met all of its objectives. The mission remains ongoing.

Initially, it was believed that this vehicle would be useful for providing “last mile” services for spacecraft launched as a part of rideshare missions.

“The reality is the market for that is not very good,” Romo said. “If you’re gonna size that market, it’s basically the market Rocket Lab serves today, which is 25 to 30 flights a year, which is fine. You can do that, but not economically very well. Your gross margins won’t be good. Your working capital kind of sucks. So that’s not at all the market that we’re after with Mira.”

Since Mira has had ample success during its first two flights, other customers have taken notice.

“It’s a high-thrust, high-maneuverability spacecraft that can operate anywhere up to GEO,” Romo said. “And so when you’re thinking about space defense and space control, they need rapid response. So we’ll move from one part of GEO to another very rapidly. And we can host payloads, like what Anduril makes, such as electronic warfare payloads, and then potentially doing proximity ops missions. So Mira wasn’t necessarily designed out of the gate for that, but what we found out after we flew it successfully was, the Space Force said, ‘Hey, we know what that thing’s for.'”

An in-space propulsion company just raised a staggering amount of money Read More »