Starbase

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

fire-destroys-starship-on-its-seventh-test-flight,-raining-debris-from-space

Fire destroys Starship on its seventh test flight, raining debris from space

This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.

SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?

Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.

On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.

Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.

This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.

Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX

The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.

In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.

Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.

With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.

Fire destroys Starship on its seventh test flight, raining debris from space Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »

the-key-moment-came-38-minutes-after-starship-roared-off-the-launch-pad

The key moment came 38 minutes after Starship roared off the launch pad


SpaceX wasn’t able to catch the Super Heavy booster, but Starship is on the cusp of orbital flight.

The sixth flight of Starship lifts off from SpaceX’s Starbase launch site at Boca Chica Beach, Texas. Credit: SpaceX.

SpaceX launched its sixth Starship rocket Tuesday, proving for the first time that the stainless steel ship can maneuver in space and paving the way for an even larger, upgraded vehicle slated to debut on the next test flight.

The only hiccup was an abortive attempt to catch the rocket’s Super Heavy booster back at the launch site in South Texas, something SpaceX achieved on the previous flight on October 13. The Starship upper stage flew halfway around the world, reaching an altitude of 118 miles (190 kilometers) before plunging through the atmosphere for a pinpoint slow-speed splashdown in the Indian Ocean.

The sixth flight of the world’s largest launcher—standing 398 feet (121.3 meters) tall—began with a lumbering liftoff from SpaceX’s Starbase facility near the US-Mexico border at 4 pm CST (22: 00 UTC) Tuesday. The rocket headed east over the Gulf of Mexico, propelled by 33 Raptor engines clustered on the bottom of its Super Heavy first stage.

A few miles away, President-elect Donald Trump joined SpaceX founder Elon Musk to witness the launch. The SpaceX boss became one of Trump’s closest allies in this year’s presidential election, giving the world’s richest man extraordinary influence in US space policy. Sen. Ted Cruz (R-Texas) was there, too, among other lawmakers. Gen. Chance Saltzman, the top commander in the US Space Force, stood nearby, chatting with Trump and other VIPs.

Elon Musk, SpaceX’s CEO, President-elect Donald Trump, and Gen. Chance Saltzman of the US Space Force watch the sixth launch of Starship Tuesday. Credit: Brandon Bell/Getty Images

From their viewing platform, they watched Starship climb into a clear autumn sky. At full power, the 33 Raptors chugged more than 40,000 pounds of super-cold liquid methane and liquid oxygen per second. The engines generated 16.7 million pounds of thrust, 60 percent more than the Soviet N1, the second-largest rocket in history.

Eight minutes later, the rocket’s upper stage, itself also known as Starship, was in space, completing the program’s fourth straight near-flawless launch. The first two test flights faltered before reaching their planned trajectory.

A brief but crucial demo

As exciting as it was, we’ve seen all that before. One of the most important new things engineers wanted to test on this flight occurred about 38 minutes after liftoff.

That’s when Starship reignited one of its six Raptor engines for a brief burn to make a slight adjustment to its flight path. The burn lasted only a few seconds, and the impulse was small—just a 48 mph (77 km/hour) change in velocity, or delta-V—but it demonstrated that the ship can safely deorbit itself on future missions.

With this achievement, Starship will likely soon be cleared to travel into orbit around Earth and deploy Starlink Internet satellites or conduct in-space refueling experiments, two of the near-term objectives on SpaceX’s Starship development roadmap.

Launching Starlinks aboard Starship will allow SpaceX to expand the capacity and reach of its commercial consumer broadband network, which, in turn, provides revenue for Musk to reinvest into Starship. Orbital refueling enables Starship voyages beyond low-Earth orbit, fulfilling SpaceX’s multibillion-dollar contract with NASA to provide a human-rated Moon lander for the agency’s Artemis program. Likewise, transferring cryogenic propellants in orbit is a prerequisite for sending Starships to Mars, making real Musk’s dream of creating a settlement on the red planet.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Until now, SpaceX has intentionally launched Starships to speeds just shy of the blistering velocities needed to maintain orbit. Engineers wanted to test the Raptor’s ability to reignite in space on the third Starship test flight in March, but the ship lost control of its orientation, and SpaceX canceled the engine firing.

Before going for a full orbital flight, officials needed to confirm that Starship could steer itself back into the atmosphere for reentry, ensuring it wouldn’t present any risk to the public with an unguided descent over a populated area. After Tuesday, SpaceX can check this off its to-do list.

“Congrats to SpaceX on Starship’s sixth test flight,” NASA Administrator Bill Nelson posted on X. “Exciting to see the Raptor engine restart in space—major progress towards orbital flight. Starship’s success is Artemis’ success. Together, we will return humanity to the Moon & set our sights on Mars.”

While it lacks the pizzazz of a fiery launch or landing, the engine relight unlocks a new phase of Starship development. SpaceX has now proven that the rocket is capable of reaching space with a fair measure of reliability. Next, engineers will fine-tune how to reliably recover the booster and the ship and learn how to use them.

Acid test

SpaceX appears well on its way to doing this. While SpaceX didn’t catch the Super Heavy booster with the launch tower’s mechanical arms Tuesday, engineers have shown they can do it. The challenge of catching Starship itself back at the launch pad is more daunting. The ship starts its reentry thousands of miles from Starbase, traveling approximately 17,000 mph (27,000 km/hour), and must thread the gap between the tower’s catch arms within a matter of inches.

The good news is that SpaceX has now twice proven it can bring Starship back to a precision splashdown in the Indian Ocean. In October, the ship settled into the sea in darkness. SpaceX moved the launch time for Tuesday’s flight to the late afternoon, setting up for splashdown shortly after sunrise northwest of Australia.

The shift in time paid off with some stunning new visuals. Cameras mounted on the outside of Starship beamed dazzling live views back to SpaceX through the Starlink network, showing a now-familiar glow of plasma encasing the spacecraft as it plowed deeper into the atmosphere. But this time, daylight revealed the ship’s flaps moving to control its belly-first descent toward the ocean. After passing through a deck of low clouds, Starship reignited its Raptor engines and tilted from horizontal to vertical, making contact with the water tail-first within view of a floating buoy and a nearby aircraft in position to observe the moment.

Here’s a replay of the spacecraft’s splashdown around 65 minutes after launch.

Splashdown confirmed! Congratulations to the entire SpaceX team on an exciting sixth flight test of Starship! pic.twitter.com/bf98Va9qmL

— SpaceX (@SpaceX) November 19, 2024

The ship made it through reentry despite flying with a substandard heat shield. Starship’s thermal protection system is made up of thousands of ceramic tiles to protect the ship from temperatures as high as 2,600° Fahrenheit (1,430° Celsius).

Kate Tice, a SpaceX engineer hosting the company’s live broadcast of the mission, said teams at Starbase removed 2,100 heat shield tiles from Starship ahead of Tuesday’s launch. Their removal exposed wider swaths of the ship’s stainless steel skin to super-heated plasma, and SpaceX teams were eager to see how well the spacecraft held up during reentry. In the language of flight testing, this approach is called exploring the corners of the envelope, where engineers evaluate how a new airplane or rocket performs in extreme conditions.

“Don’t be surprised if we see some wackadoodle stuff happen here,” Tice said. There was nothing of the sort. One of the ship’s flaps appeared to suffer some heating damage, but it remained intact and functional, and the harm looked to be less substantial than damage seen on previous flights.

Many of the removed tiles came from the sides of Starship where SpaceX plans to place catch fittings on future vehicles. These are the hardware protuberances that will catch on the top side of the launch tower’s mechanical arms, similar to fittings used on the Super Heavy booster.

“The next flight, we want to better understand where we can install catch hardware, not necessarily to actually do the catch but to see how that hardware holds up in those spots,” Tice said. “Today’s flight will help inform ‘does the stainless steel hold up like we think it may, based on experiments that we conducted on Flight 5?'”

Musk wrote on his social media platform X that SpaceX could try to bring Starship back to Starbase for a catch on the eighth test flight, which is likely to occur in the first half of 2025.

“We will do one more ocean landing of the ship,” Musk said. “If that goes well, then SpaceX will attempt to catch the ship with the tower.”

The heat shield, Musk added, is a focal point of SpaceX’s attention. The delicate heat-absorbing tiles used on the belly of the space shuttle proved vexing to NASA technicians. Early in the shuttle’s development, NASA had trouble keeping tiles adhered to the shuttle’s aluminum skin. Each of the shuttle tiles was custom-machined to fit on a specific location on the orbiter, complicating refurbishment between flights. Starship’s tiles are all hexagonal in shape and agnostic to where technicians place them on the vehicle.

“The biggest technology challenge remaining for Starship is a fully & immediately reusable heat shield,” Musk wrote on X. “Being able to land the ship, refill propellant & launch right away with no refurbishment or laborious inspection. That is the acid test.”

This photo of the Starship vehicle for Flight 6, numbered Ship 31, shows exposed portions of the vehicle’s stainless steel skin after tile removal. Credit: SpaceX

There were no details available Tuesday night on what caused the Super Heavy booster to divert from its planned catch on the launch tower. After detaching from the Starship upper stage less than three minutes into the flight, the booster reversed course to begin the journey back to Starbase.

Then SpaceX’s flight director announced the rocket would fly itself into the Gulf rather than back to the launch site: “Booster offshore divert.”

The booster finished its descent with a seemingly perfect landing burn using a subset of its Raptor engines. As expected after the water landing, the booster—itself 233 feet (71 meters) tall—toppled and broke apart in a dramatic fireball visible to onshore spectators.

In an update posted to its website after the launch, SpaceX said automated health checks of hardware on the launch and catch tower triggered the aborted catch attempt. The company did not say what system failed the health check. As a safety measure, SpaceX must send a manual command for the booster to come back to land in order to prevent a malfunction from endangering people or property.

Turning it up to 11

There will be plenty more opportunities for more booster catches in the coming months as SpaceX ramps up its launch cadence at Starbase. Gwynne Shotwell, SpaceX’s president and chief operating officer, hinted at the scale of the company’s ambitions last week.

“We just passed 400 launches on Falcon, and I would not be surprised if we fly 400 Starship launches in the next four years,” she said at the Barron Investment Conference.

The next batch of test flights will use an improved version of Starship designated Block 2, or V2. Starship Block 2 comes with larger propellant tanks, redesigned forward flaps, and a better heat shield.

The new-generation Starship will hold more than 11 million pounds of fuel and oxidizer, about a million pounds more than the capacity of Starship Block 1. The booster and ship will produce more thrust, and Block 2 will measure 408 feet (124.4 meters) tall, stretching the height of the full stack by a little more than 10 feet.

Put together, these modifications should give Starship the ability to heave a payload of up to 220,000 pounds (100 metric tons) into low-Earth orbit, about twice the carrying capacity of the first-generation ship. Further down the line, SpaceX plans to introduce Starship Block 3 to again double the ship’s payload capacity.

Just as importantly, these changes are designed to make it easier for SpaceX to recover and reuse the Super Heavy booster and Starship upper stage. SpaceX’s goal of fielding a fully reusable launcher builds on the partial reuse SpaceX pioneered with its Falcon 9 rocket. This should dramatically bring down launch costs, according to SpaceX’s vision.

With Tuesday’s flight, it’s clear Starship works. Now it’s time to see what it can do.

Updated with additional details, quotes, and images.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The key moment came 38 minutes after Starship roared off the launch pad Read More »

after-seeing-hundreds-of-launches,-spacex’s-rocket-catch-was-a-new-thrill

After seeing hundreds of launches, SpaceX’s rocket catch was a new thrill


For a few moments, my viewing angle made it look like the rocket was coming right at me.

Coming in for the catch. Credit: Stephen Clark/Ars Technica

BOCA CHICA BEACH, Texas—I’ve taken some time to process what happened on the mudflats of South Texas a little more than a week ago and relived the scene in my mind countless times.

With each replay, it’s still as astonishing as it was when I saw it on October 13, standing on an elevated platform less than 4 miles away. It was surreal watching SpaceX’s enormous 20-story-tall Super Heavy rocket booster plummeting through the sky before being caught back at its launch pad by giant mechanical arms.

This is the way, according to SpaceX, to enable a future where it’s possible to rapidly reuse rockets, not too different from the way airlines turn around their planes between flights. This is required for SpaceX to accomplish the company’s mission, set out by Elon Musk two decades ago, of building a settlement on Mars.

Of course, SpaceX’s cameras got much better views of the catch than mine. This is one of my favorite video clips.

The final phase of Super Heavy’s landing burn used the three center Raptor engines to precisely steer into catch position pic.twitter.com/BxQbOmT4yk

— SpaceX (@SpaceX) October 14, 2024

In the near-term future, regularly launching and landing Super Heavy boosters, and eventually the Starship upper stage that goes into orbit, will make it possible for SpaceX to achieve the rapid-fire launch cadence the company needs to fulfill its contracts with NASA. The space agency is paying SpaceX roughly $4 billion to develop a human-rated version of Starship to land astronauts on the Moon under the umbrella of the Artemis program.

To make that happen, SpaceX must launch numerous Starship tankers over the course of a few weeks to a few months to refuel the Moon-bound Starship lander in low-Earth orbit. Rapid reuse is fundamental to the lunar lander architecture NASA chose for the first two Artemis landing missions.

SpaceX, which is funding most of Starship’s development costs, says upgraded versions will be capable of hauling 200 metric tons of payload to low-Earth orbit while flying often at a relatively low cost. This would unlock innumerable other potential applications for the US military and commercial industry.

Here’s a sampling of the photos I captured of SpaceX’s launch and catch, followed by the story of how I got them.

The fifth full-scale test flight of SpaceX’s new-generation Starship rocket lifted off from South Texas at sunrise Sunday morning. Stephen Clark/Ars Technica

Some context

I probably spent too much time watching last week’s flight through my camera’s viewfinder, but I suspect I’ll see it many more times. After all, SpaceX wants to make this a routine occurrence, more common than the landings of the smaller Falcon 9 booster now happening several times per week.

Nine years ago, I watched from 7 miles away as SpaceX landed a Falcon 9 for the first time. This was the closest anyone not directly involved in the mission could watch as the Falcon 9’s first stage returned to Cape Canaveral Space Force Station in Florida, a few minutes after lifting off with a batch of commercial communications satellites.

Citing safety concerns, NASA and the US Air Force closed large swaths of the spaceport for the flight. Journalists and VIPs were kept far away, and the locations on the base where employees or special guests typically watch a launch were off-limits. The landing happened at night and played out like a launch in reverse, with the Falcon 9 booster settling to a smooth touchdown on a concrete landing pad a few miles from the launch site.

The Falcon 9 landing on December 21, 2015, came after several missed landings on SpaceX’s floating offshore drone ship. With the Super Heavy booster, SpaceX nailed the catch on the first try.

The catch method means the rocket doesn’t need to carry landing legs, as the Falcon 9 does. This reduces the rocket’s weight and complexity, and theoretically reduces the amount of time and money needed to prepare the rocket to fly again.

I witnessed the first catch of SpaceX’s Super Heavy booster last week from just outside the restricted zone around the company’s sprawling Starbase launch site in South Texas. Deputies from the local sheriff’s office patrolled the area to ensure no one strayed inside the keep-out area and set up roadblocks to turn away anyone who wasn’t supposed to be there.

The launch was early in the morning, so I arrived late the night before at a viewing site run by Rocket Ranch, a campground that caters to SpaceX fans seeking a front-row seat to the goings-on at Starbase. Some SpaceX employees, several other reporters, and media photographers were there, too.

There are other places to view a Starship launch. Condominium and hotel towers on South Padre Island roughly 6 miles from the launch pad, a little farther than my post, offer commanding aerial views of Starbase, which is situated on Boca Chica Beach a few miles north of the US-Mexico border. The closest publicly accessible place to watch a Starship launch is on the south shore of the mouth of the Rio Grande River, but if you’re coming from the United States, getting there requires crossing the border and driving off-road.

People gather at the Rocket Ranch viewing site near Boca Chica Beach, Texas, before the third Starship test flight in March.

People gather at the Rocket Ranch viewing site near Boca Chica Beach, Texas, before the third Starship test flight in March. Credit: Brandon Bell/Getty Images

I chose a location with an ambiance somewhere in between the hustle and bustle of South Padre Island and the isolated beach just across the border in Mexico. The vibe on the eve of the launch had the mix of a rave and a pilgrimage of SpaceX true believers.

A laser light show projected the outline of a Starship against a tree as uptempo EDM tracks blared from speakers. Meanwhile, dark skies above revealed cosmic wonders invisible to most city dwellers, and behind us, the Rio Grande inexorably flowed toward the sea. Those of us who were there to work got a few hours of sleep, but I’m not sure I can say the same for everyone.

At first light, a few scattered yucca plants sticking up from the chaparral were the only things between us and SpaceX’s sky-scraping Starship rocket on the horizon. We got word the launch time would slip 25 minutes. SpaceX chose the perfect time to fly, with a crystal-clear sky hued by the rising Sun.

First, you see it

I was at Starbase for all four previous Starship test flights and have covered more than 300 rocket launches in person. I’ve been privileged to witness a lot of history, but after hundreds of launches, some of the novelty has worn off. Don’t get me wrong—I still feel a lump in my throat every time I see a rocket leave the planet. Prelaunch jitters are a real thing. But I no longer view every launch as a newsworthy event.

October 13 was different.

Those prelaunch anxieties were present as SpaceX counted off the final seconds to liftoff. First, you see it. A blast of orange flashed from the bottom of the gleaming, frosty rocket filled with super-cold propellants. Then, the 11 million-pound vehicle began a glacial climb from the launch pad. About 20 seconds later, the rumble from the rocket’s 33 methane-fueled engines reached our location.

Our viewing platform shook from the vibrations for over a minute as Starship and the Super Heavy booster soared into the stratosphere. Two-and-a-half minutes into the flight, the rocket was just a point of bluish-white light as it accelerated east over the Gulf of Mexico.

Another burst of orange encircled the rocket during the so-called hot-staging maneuver, when the Starship upper stage lit its engines at the moment the Super Heavy booster detached to begin the return to Starbase. Flying at the edge of space more than 300,000 feet over the Gulf, the booster flipped around and fired its engines to cancel out its downrange velocity and propel itself back toward the coastline.

The engines shut down, and the booster plunged deeper into the atmosphere. Eventually, the booster transformed from a dot in the sky back into the shape of a rocket as it approached Starbase at supersonic speed. The rocket’s velocity became more evident as it got closer. For a few moments, my viewing angle made it look like the rocket—bigger than the fuselage of a 747 jumbo jet—was coming right at me.

The descending booster zoomed through the contrail cloud it left behind during launch, then reappeared into clear air. With the naked eye, I could see a glow inside the rocket’s engine bay as it dived toward the launch pad, presumably from heat generated as the vehicle slammed into ever-denser air on the way back to Earth. This phenomenon made the rocket resemble a lit cigar.

Finally, the rocket hit the brakes by igniting 13 of its 33 engines, then downshifted to three engines for the final maneuver to slide in between the launch tower’s two catch arms. Like balancing a pencil on the tip of your finger, the Raptor engines vectored their thrust to steady the booster, which, for a moment, appeared to be floating next to the tower.

The Super Heavy booster, more than 20 stories tall, rights itself over the launch pad in Texas, moments before two mechanical arms grabbed it in mid-air.

Credit: Stephen Clark/Ars Technica

The Super Heavy booster, more than 20 stories tall, rights itself over the launch pad in Texas, moments before two mechanical arms grabbed it in mid-air. Credit: Stephen Clark/Ars Technica

A double-clap sonic boom jolted spectators from their slack-jawed awe. Only then could we hear the roar from the start of the Super Heavy booster’s landing burn. This sound reached us just as the rocket settled into the grasp of the launch tower, with its so-called catch fittings coming into contact with the metallic beams of the catch arms.

The engines switched off, and there it was. Many of the spectators lucky enough to be there jumped up and down with joy, hugged their friends, or let out an ecstatic yell. I snapped a few final photos and returned to his laptop, grinning, speechless, and started wondering how I could put this all into words.

Once the smoke cleared, at first glance, the rocket looked as good as new. There was no soot on the outside of the booster, as it is on the Falcon 9 rocket after returning from space. This is because the Super Heavy booster and Starship use cleaner-burning methane fuel instead of kerosene.

Elon Musk, SpaceX’s founder and CEO, later said the outer ring of engine nozzles on the bottom of the rocket showed signs of heating damage. This, he said, would be “easily addressed.”

What’s not so easy to address is how SpaceX can top this. A landing on the Moon or Mars? Sure, but realistically, those milestones are years off. There’s something that’ll happen before then.

Sometime soon, SpaceX will try to catch a Starship back at the launch pad at the end of an orbital flight. This will be an extraordinarily difficult feat, far exceeding the challenge of catching the Super Heavy booster.

Super Heavy only reaches a fraction of the altitude and speed of the Starship upper stage, and while the booster’s size and the catch method add degrees of difficulty, the rocket follows much the same up-and-down flight profile pioneered by the Falcon 9. Starship, on the other hand, will reenter the atmosphere from orbital velocity, streak through the sky surrounded by super-heated plasma, then shift itself into a horizontal orientation for a final descent SpaceX likes to call the “belly flop.”

In the last few seconds, Starship will reignite three of its engines, flip itself vertical, and come down for a precision landing. SpaceX demonstrated the ship could do this on the test flight last week, when the vehicle made a controlled on-target splashdown in the Indian Ocean after traveling halfway around the world from Texas.

If everything goes according to plan, SpaceX could be ready to try to catch a Starship for real next year. Stay tuned.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

After seeing hundreds of launches, SpaceX’s rocket catch was a new thrill Read More »

starship-is-about-to-launch-on-its-fifth-flight,-and-this-time-there’s-a-catch

Starship is about to launch on its fifth flight, and this time there’s a catch

“We landed with half a centimeter accuracy in the ocean, so we think we have a reasonable chance to come back to the tower,” Gerstenmaier said.

Launch playbook

The Starship upper stage, meanwhile, will light six Raptor engines to accelerate to nearly orbital velocity, giving the rocket enough oomph to coast halfway around the world before falling back into the atmosphere over the Indian Ocean.

This is a similar trajectory to the one Starship flew in June, when it survived a fiery reentry for a controlled splashdown. It was the first time SpaceX completed an end-to-end Starship test flight. Onboard cameras showed fragments of the heat shield falling off Starship when it reentered the atmosphere, but the vehicle maintained control and reignited its Raptor engines, flipped from a horizontal to a vertical orientation, and settled into the Indian Ocean northwest of Australia.

After analyzing the results from the June mission, SpaceX engineers decided to rework the heat shield for the next Starship vehicle. The company said its technicians spent more than 12,000 hours replacing the entire thermal protection system with new-generation tiles, a backup ablative layer, and additional protections between the ship’s flap structures.

From start to finish, Sunday’s test flight should last approximately 1 hour and 5 minutes.

This diagram illustrates the path the Super Heavy booster will take to return to the launch pad in Texas, while the Starship upper stage continues the climb to space.

Credit: SpaceX

This diagram illustrates the path the Super Heavy booster will take to return to the launch pad in Texas, while the Starship upper stage continues the climb to space. Credit: SpaceX

Here’s an overview of the key events during Sunday’s flight:

 T+00: 00: 02: Liftoff

 T+00: 01: 02: Maximum aerodynamic pressure

 T+00: 02: 33: Super Heavy MECO (most engines cut off)

 T+00: 02: 41: Stage separation and ignition of Starship engines

• T+00: 02: 48: Super Heavy boost-back burn start

 T+00: 03: 41: Super Heavy boost-back burn shutdown

 T+00: 03: 43: Hot staging ring jettison

• T+00: 06: 08: Super Heavy is subsonic

• T+00: 06: 33: Super Heavy landing burn start

• T+00: 06: 56: Super Heavy landing burn shutdown and catch attempt

• T+00: 08: 27: Starship engine cutoff

• T+00: 48: 03: Starship reentry

• T+01: 02: 34: Starship is transonic

• T+01: 03: 43: Starship is subsonic

• T+01: 05: 15: Starship landing flip

• T+01: 05: 20: Starship landing burn

• T+01: 05: 34: Starship splashdown in Indian Ocean

SpaceX officials hope to see Starship’s heat shield stay intact as it dips into the atmosphere, when temperatures will reach 2,600° Fahrenheit (1,430° Celsius), hot enough to melt aluminum, the metal used to build many launch vehicles. SpaceX chose stainless steel for Starship because it strong at cryogenic temperatures—the rocket consumes super-cold fuel and oxidizer—and has a higher melting point than aluminum.

Starship is about to launch on its fifth flight, and this time there’s a catch Read More »

spacex’s-next-starship-launch—and-first-catch—could-happen-this-weekend

SpaceX’s next Starship launch—and first catch—could happen this weekend


The FAA is still reviewing plans for the fifth Starship test flight, but could approve it soon.

SpaceX’s fully-stacked Super Heavy booster and Starship upper stage at the company’s launch site in South Texas. Credit: SpaceX

We may not have to wait as long as we thought for the next test flight of SpaceX’s Starship rocket.

The world’s most powerful launcher could fly again as soon as Sunday, SpaceX says, assuming the Federal Aviation Administration grants approval. The last public statement released from the FAA suggested the agency didn’t expect to determine whether to approve a commercial launch license for SpaceX’s next Starship test flight before late November.

There’s some optimism at SpaceX that the FAA might issue a launch license much sooner, perhaps in time for Starship to fly this weekend. The launch window Sunday opens at 7 am CDT (8 am EDT; 12: 00 UTC), about a half-hour before sunrise at SpaceX’s Starbase launch site in South Texas.

“The fifth flight test of Starship will aim to take another step towards full and rapid reusability,” SpaceX wrote in an update posted on its website. “The primary objectives will be attempting the first ever return to launch site and catch of the Super Heavy booster and another Starship reentry and landing burn, aiming for an on-target splashdown of Starship in the Indian Ocean.”

Stacked together, the Super Heavy booster, or first stage, and the Starship upper stage stand nearly 400 feet (121 meters) tall. The Super Heavy booster—itself bigger than the fuselage of a 747 jumbo jet—will vertically return to the Starbase launch pad guided by cold gas thrusters, aerodynamic grid fins, and propulsive maneuvers with its methane-fueled Raptor engines.

Once the booster’s Raptor engines slow it to a hover, mechanical arms on the launch pad tower will close in around the rocket and capture it in midair. If you’re into rockets, or just want to spice up your morning, you don’t want to miss this. We’ll have a more detailed story before the launch previewing the timeline of events.

Safety measures

The FAA has been reviewing SpaceX’s plans to bring the Super Heavy booster back to the Starbase launch pad for months.

Most recently, the agency’s review of SpaceX’s proposed flight plan has focused on the effects of the rocket’s sonic boom as it comes back to Earth. The FAA and other agencies are also studying how a disposable section of the booster, called a hot-staging ring, might impact the environment when it falls into the sea just offshore from Starbase, located on the Gulf Coast east of Brownsville.

During SpaceX’s most recent Starship test flight in June, the Super Heavy booster completed a control descent to a predetermined location in the Gulf of Mexico, giving engineers enough confidence to try a return to the launch site on the next mission.

SpaceX protested the length of time the FAA said it needed to review the flight plan, after the federal regulator previously told SpaceX it expected to make a license determination in September.

“Unfortunately, instead of focusing resources on critical safety analysis and collaborating on rational safeguards to protect both the public and the environment, the licensing process has been repeatedly derailed by issues ranging from the frivolous to the patently absurd,” SpaceX wrote in a statement last month.

“I think the two-month delay is necessary to comply with the launch requirements, and I think that’s an important part of safety culture,” said Michael Whitaker, the FAA administrator, in a congressional hearing September 24.

The FAA is responsible for ensuring commercial space launches do not endanger the public and comport with the US government’s national security and foreign policy interests. Earlier this year, SpaceX was also fined by the Texas Commission on Environmental Quality and the Environmental Protection Agency for alleged violations of environmental regulations related to the launch pad’s water system, which cools a steel flame deflector under the 33 main engines of Starship’s Super Heavy booster.

Ars contacted an FAA spokesperson Tuesday about the status of the agency’s review of the Starship launch license request, but did not receive a response.

Artist’s illustration of SpaceX’s Super Heavy booster coming in for a catch by the launch pad’s mechanical arms.

Credit: SpaceX

Artist’s illustration of SpaceX’s Super Heavy booster coming in for a catch by the launch pad’s mechanical arms. Credit: SpaceX

Teams at Starbase completed two partial propellant loading tests on the fully stacked Starship rocket in recent days. Early Tuesday, SpaceX tested the water deluge system at the launch pad two times, presumably to check the system’s ability to activate minutes apart to protect the pad during launch and recovery of the Super Heavy booster.

Later Tuesday, SpaceX removed the Starship upper stage from the Super Heavy booster. This is required for technicians to perform one of the final tasks to prepare for launch—installing the rocket’s flight termination system, which would destroy the rocket if it veers off course.

“We accept no compromises when it comes to ensuring the safety of the public and our team, and the return will only be attempted if conditions are right,” SpaceX said.

SpaceX outlined additional human-in-the-loop safety criteria for the upcoming Starship flight. SpaceX launches are typically fully automated from liftoff through the end of the mission.

“Thousands of distinct vehicle and pad criteria must be met prior to a return and catch attempt of the Super Heavy booster, which will require healthy systems on the booster and tower and a manual command from the mission’s flight director,” SpaceX wrote. “If this command is not sent prior to the completion of the boostback burn, or if automated health checks show unacceptable conditions with Super Heavy or the tower, the booster will default to a trajectory that takes it to a landing burn and soft splashdown in the Gulf of Mexico.”

Recovering the Super Heavy booster back at the launch pad is critical for SpaceX’s ambition to rapidly reuse the rocket. Eventually, SpaceX will also recover and reuse the Starship portion of the rocket, but for now, the company is sticking to water landings for the ship.

Extensive upgrades

SpaceX teams in Texas have beefed up the launch tower and catch arms in the last few months, working around the clock to add structural stiffeners and test the arms’ load-carrying capability.

“Extensive upgrades ahead of this flight test have been made to hardware and software across Super Heavy, Starship, and the launch and catch tower infrastructure at Starbase,” SpaceX said. “SpaceX engineers have spent years preparing and months testing for the booster catch attempt, with technicians pouring tens of thousands of hours into building the infrastructure to maximize our chances for success.”

It will take about seven minutes for the Super Heavy booster to climb to the edge of space, separate from the Starship upper stage, and return to Starbase for recovery. While the booster comes back to the ground, Starship will fire its six engines to accelerate to near orbital velocity, fast enough to complete a half-lap around Earth before gravity pulls it toward an atmospheric reentry over the Indian Ocean.

This is a similar trajectory to the one Starship flew in June, when it survived a fiery reentry for a controlled splashdown. It was the first time SpaceX completed an end-to-end Starship test flight.

After analyzing the results from the June mission, SpaceX engineers decided to rework the heat shield for the next Starship vehicle. The company said its technicians spent more than 12,000 hours replacing the entire thermal protection system with new-generation tiles, a backup ablative layer, and additional protections between the ship’s flap structures.

Onboard cameras showed fragments of the heat shield falling off Starship when it reentered the atmosphere in June.

“This massive effort, along with updates to the ship’s operations and software for reentry and landing burn, will look to improve upon the previous flight and bring Starship to a soft splashdown at the target area in the Indian Ocean,” SpaceX said.

Starship won’t attempt to reignite its Raptor engines in space on the upcoming test flight. This is one of the next things SpaceX needs to demonstrate for Starship to soar into a stable orbit around Earth and guide itself to a controlled reentry to ensure it doesn’t become stranded in space or fall over a populated area. SpaceX wanted to relight a Raptor engine in space on Starship’s third test flight in March, but aborted the maneuver.

The business end of Starship’s Super Heavy booster during a launch in March.

Credit: SpaceX

The business end of Starship’s Super Heavy booster during a launch in March. Credit: SpaceX

Once Starship is able to sustain a flight in low-Earth orbit, SpaceX can begin experiments with in-space refueling, which is required to support future Starship flights to the Moon, Mars, and other deep space destinations. Starship is a foundational element of SpaceX’s vision to create a settlement on the red planet.

NASA has a contract with SpaceX to develop a human-rated Starship to land astronauts on the Moon as part of the agency’s Artemis program. NASA’s official schedule calls for the first Artemis crew landing in September 2026. Realistically, the landing will probably happen later in the decade because the Starship lander and new lunar spacesuits likely won’t be ready in two years.

Starships will likely fly many dozens of times, if not more, before NASA approves it to land astronauts on the Moon. These flights will test the rocket’s ability to repeatedly and reliably fly to space and back, transfer cryogenic propellants in orbit, and safely land on the lunar surface without a crew.

As we’ve seen with SpaceX’s workhorse Falcon 9 rocket, rapidly reusing elements of a launch vehicle can enable rapid-fire launch cadences. Validating the architecture for recovering the Super Heavy booster directly on the launch pad, as SpaceX intends to do quite soon, is a key step on this path.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX’s next Starship launch—and first catch—could happen this weekend Read More »

sparks-are-flying-day-and-night-as-spacex-preps-starship-pad-to-catch-a-rocket

Sparks are flying day and night as SpaceX preps Starship pad to catch a rocket

Pretty much every day for the last couple of weeks, workers wielding welding guns and torches have climbed onto SpaceX’s Starship launch pad in South Texas to make last-minute upgrades ahead of the next test flight of the world’s largest rocket.

Livestreams of the launch site provided by LabPadre and NASASpaceflight.com have shown sparks raining down two mechanical arms extending from the side of the Starship launch tower at SpaceX’s Starbase launch site on the Gulf Coast east of Brownsville, Texas. We are publishing several views here of the welding activity with the permission of LabPadre, which runs a YouTube page with multiple live views of Starbase.

If SpaceX has its way on the next flight of Starship, these arms will close together to capture the first-stage booster, called Super Heavy, as it descends back to Earth and slows to a hover over the launch pad.

This method of rocket recovery is remarkably different from how SpaceX lands its smaller Falcon 9 booster, which has landing legs to touch down on offshore ocean-going platforms or at concrete sites onshore. Catching the rocket with large metallic arms—sometimes called “mechazilla arms” or “chopsticks”—would reduce the turnaround time to reuse the booster and simplify its design, according to SpaceX.

SpaceX has launched the nearly 400-foot-tall (121 meter) Starship rocket four times, most recently in June, when the Super Heavy booster, itself roughly 233 feet (71 meters) tall, made a pinpoint splashdown in the Gulf of Mexico just off the coast of Starbase.

On the same flight in June, the Starship upper stage flew halfway around the world and reentered the atmosphere over the Indian Ocean. The ship survived reentry and splashed down in the open ocean northwest of Australia. This flight was the first time either part of the Starship rocket made it back to Earth intact, but SpaceX didn’t recover the booster or the ship.

Doubling up

Lessons learned from the June test flight prompted SpaceX to replace thousands of heat shield tiles on the Starship vehicle for the next mission. While the ship survived reentry in June, onboard camera views showed numerous tiles ripped away from the vehicle. Last month, SpaceX test-fired engines on the booster and ship assigned to the next launch.

On August 8, SpaceX said Starship and Super Heavy were “ready to fly, pending regulatory approval” from the Federal Aviation Administration. An FAA spokesperson said the agency is evaluating SpaceX’s proposed flight profile for the next Starship test flight, when SpaceX wants to try catching the booster on the pad. This will be the first time SpaceX will try to bring the stainless-steel Super Heavy booster, as long as and wider than a Boeing 747 jumbo jet, back to a landing on land.

Sparks fly at Starbase as welders work overnight at the Starship launch pad.

Enlarge / Sparks fly at Starbase as welders work overnight at the Starship launch pad.

While the rocket appears to be ready to fly, SpaceX officials clearly believe there’s more work to do on the launch pad. Closer views revealed welders are installing structural supports, or doublers, to certain parts of the catch arms. Elsewhere on the arms, workers were seen removing and adding other unknown pieces of hardware. SpaceX hasn’t specified exactly what kind of work teams are doing on the Starship launch pad in Texas, but the focus is on beefing up hardware necessary for catching the Super Heavy booster.

All of this work is occurring during the hottest part of the year in South Texas. On most days this month, afternoon temperatures have soared into the mid-to-upper 90s Fahrenheit, with sticky humidity. A lot of the work on the catch arms has occurred at night, when temperatures drop into the lower 80s.

It’s unclear how long it will take for the FAA to approve a license for SpaceX to launch and recover the rocket on the next test flight or when SpaceX will complete the upgrades on the launch pad. Elon Musk, SpaceX’s founder and CEO, suggested earlier this month that the flight could take off by the end of August, but the condition of the launch pad and remaining tests indicate a launch is still probably at least a couple of weeks away.

Once workers finish up their tasks upgrading the pad and clearing scaffolding and cranes from the area, SpaceX will likely stack the Super Heavy booster and Starship upper stage and fill them with propellants during a full countdown rehearsal, as it has before each previous Starship launch.

Musk has signaled several times that the company will try to catch the Super Heavy booster on the next flight, which will also accelerate the Starship upper stage to nearly orbital velocity for another reentry demonstration over the Indian Ocean. Last month, SpaceX released a video teasing a catch of the booster on the next Starship flight, showing the rocket returning to Starbase with its Raptor engines firing.

Meanwhile, SpaceX has stacked a second Starship launch tower next to the existing launch pad in Texas. The company still has a lot of work to do to outfit the second launch pad before it is ready to support a Starship flight, but SpaceX could have it ready for activation sometime next year. SpaceX also plans two Starship launch pads at Cape Canaveral, Florida. All these sites will allow SpaceX to launch Starships more often. The company is also finishing a sprawling factory near the Starship factory in South Texas, just a couple of miles inland from the launch pads there.

Sparks are flying day and night as SpaceX preps Starship pad to catch a rocket Read More »

although-it’s-not-final,-spacex-just-got-good-news-from-the-faa-on-starbase

Although it’s not final, SpaceX just got good news from the FAA on Starbase

A superfluity of Starships —

“SpaceX has dramatically reduced the duration of operations.”

The Super Heavy booster for Flight 5 of Starship undergoes a static fire test earlier this month.

Enlarge / The Super Heavy booster for Flight 5 of Starship undergoes a static fire test earlier this month.

SpaceX

After SpaceX decided to launch orbital missions of its Starship rocket from Texas about five years ago, the company had to undergo a federal environmental review of the site to ensure it was safe to do so.

As a part of this multi-year process, the Federal Aviation Administration completed a Final Programmatic Environmental Assessment in June 2022. Following that review, SpaceX received approval to conduct up to five Starship launches from South Texas annually.

SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026.

To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site. On Monday, the FAA signaled that it is inclined to grant permission for this.

A solid step for SpaceX

The federal agency released a 154-page “Draft Tiered Environmental Assessment” for an increased cadence of Starship launches from South Texas. In conclusion, the document stated: “The FAA has concluded that the modification of SpaceX’s existing vehicle operator license for Starship/Super Heavy operations conforms to the prior environmental documentation, consistent with the data contained in the 2022 PEA, that there are no significant environmental changes, and all pertinent conditions and requirements of the prior approval have been met or will be met in the current action.”

Effectively, then, the FAA is saying that its extensive 2022 analysis of Starship activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposed modifications.

This is not the final word. In the parlance of the FAA, this is just milestone No. 3 in the seven-part process that results in a final determination. Up next are a series of public meetings, both in person in South Texas and online, during the month of August. The public comment period will then close on August 29.

Although the process is not yet complete, this document indicates the current thinking of federal regulators, who appear inclined to be permissive of an increased scope of activities. This is no small finding, as SpaceX is not only seeking to launch more rockets, but also to land them back at Starbase, as well as significantly increase the thrust of the vehicles.

SpaceX asked the FAA—which has federal authority to regulate such activities in order to protect life and property on the ground—for 25 annual launches and 50 total landings, 25 for Starship and 25 for Super Heavy. The company is also seeking to conduct up to 90 seconds of daytime Starship static fire tests, and 70 seconds of daytime Super Heavy static fire tests a year.

Bigger rockets, more propellant

SpaceX also is developing more powerful variants of its rocket, and the launch of these vehicles would also be permitted. Under the environmental assessment completed in 2022, SpaceX’s plans called for a 50-meter-tall Starship and a 71-meter-tall Super Heavy booster stage. Its upgraded Starship would be 70 meters tall, atop an 80-meter boost stage, for a total stack height of 150 meters.

The company is contemplating a far greater thrust for each of the vehicles, more than doubling Starship’s thrust to 6.5 million pounds and substantially increasing Super Heavy’s thrust to 2.3 million pounds. A bigger, more powerful launch system will require more than 1,500 tons of liquid oxygen and methane propellant.

Upgrade plans for Starship and Super Heavy.

Enlarge / Upgrade plans for Starship and Super Heavy.

FAA

One change that may have helped sell this increased flight rate is that SpaceX is not seeking any additional increases in road closures of State Highway 4, which leads from Brownsville to Boca Chica Beach. This road passes right by the launch site and is closed during launches and static fire tests. SpaceX has moved much of its pre-launch testing to a new location nearby that does not require road closures.

“SpaceX has dramatically reduced the duration of operations and the number of access restrictions through engineering analysis and improvements,” the FAA draft document states. “There has been an 85% reduction in the number of access restrictions from Flight 1 to Flight 3. Additionally, a majority of the testing that required access restrictions has been moved to SpaceX’s Massey’s Test Site, approximately 4 miles away.”

After the public comment period, the FAA will prepare a final environmental assessment and render a decision on the request.

Although it’s not final, SpaceX just got good news from the FAA on Starbase Read More »

spacex-is-about-to-launch-starship-again—the-faa-will-be-more-forgiving-this-time

SpaceX is about to launch Starship again—the FAA will be more forgiving this time

The rocket for SpaceX's fourth full-scale Starship test flight awaits liftoff from Starbase, the company's private launch base in South Texas.

Enlarge / The rocket for SpaceX’s fourth full-scale Starship test flight awaits liftoff from Starbase, the company’s private launch base in South Texas.

SpaceX

The Federal Aviation Administration approved the commercial launch license for the fourth test flight of SpaceX’s Starship rocket Tuesday, with liftoff from South Texas targeted for just after sunrise Thursday.

“The FAA has approved a license authorization for SpaceX Starship Flight 4,” the agency said in a statement. “SpaceX met all safety and other licensing requirements for this test flight.”

Shortly after the FAA announced the launch license, SpaceX confirmed plans to launch the fourth test flight of the world’s largest rocket at 7: 00 am CDT (12: 00 UTC) Thursday. The launch window runs for two hours.

This flight follows three prior demonstration missions, each progressively more successful, of SpaceX’s privately developed mega-rocket. The last time Starship flew—on March 14—it completed an eight-and-a-half minute climb into space, but the ship was unable to maneuver itself as it coasted nearly 150 miles (250 km) above Earth. This controllability problem caused the rocket to break apart during reentry.

On Thursday’s flight, SpaceX officials will expect the ascent portion of the test flight to be similarly successful to the launch in March. The objectives this time will be to demonstrate Starship’s ability to survive the most extreme heating of reentry, when temperatures peak at 2,600° Fahrenheit (1,430° Celsius) as the vehicle plunges into the atmosphere at more than 20 times the speed of sound.

SpaceX officials also hope to see the Super Heavy booster guide itself toward a soft splashdown in the Gulf of Mexico just offshore from the company’s launch site, known as Starbase, in Cameron County, Texas.

“The fourth flight test turns our focus from achieving orbit to demonstrating the ability to return and reuse Starship and Super Heavy,” SpaceX wrote in an overview of the mission.

Last month, SpaceX completed a “wet dress rehearsal” at Starbase, where the launch team fully loaded the rocket with cryogenic methane and liquid oxygen propellants. Before the practice countdown, SpaceX test-fired the booster and ship at the launch site. More recently, technicians installed components of the rocket’s self-destruct system, which would activate to blow up the rocket if it flies off course.

Then, on Tuesday, SpaceX lowered the Starship upper stage from the top of the Super Heavy booster, presumably to perform final touch-ups to the ship’s heat shield, composed of 18,000 hexagonal ceramic tiles to protect its stainless-steel structure during reentry. Ground teams were expected to raise the ship, or upper stage, back on top of the booster sometime Wednesday, returning the rocket to its full height of 397 feet (121 meters) ahead of Thursday morning’s launch window.

The tick-tock of Starship’s fourth flight

If all goes according to plan, SpaceX’s launch team will start loading 10 million pounds of super-cold propellants into the rocket around 49 minutes before liftoff Thursday. The methane and liquid oxygen will first flow into the smaller tanks on the ship, then into the larger tanks on the booster.

The rocket should be fully loaded about three minutes prior to launch, and, following a sequence of automated checks, the computer controlling the countdown will give the command to light the booster’s 33 Raptor engines. Three seconds later, the rocket will begin its vertical climb off the launch mount, with its engines capable of producing more than 16 million pounds of thrust at full power.

Heading east from the Texas Gulf Coast, the rocket will exceed the speed of sound in about a minute, then begin shutting down its 33 main engines around 2 minutes and 41 seconds after liftoff. Then, just as the Super Heavy booster jettisons to begin a descent back to Earth, Starship’s six Raptor engines will ignite to continue pushing the upper portion of the rocket into space. Starship’s engines are expected to burn until T+ 8 minutes, 23 seconds, accelerating the rocket to near-orbital velocity with enough energy to fly an arcing trajectory halfway around the world to the Indian Ocean.

All of this will be similar to the events of the last Starship launch in March. What differs in the flight plan this time involves the attempts to steer the booster and ship back to Earth. This is important to lay the groundwork for future flights, when SpaceX wants to bring the Super Heavy booster—the size of the fuselage of a Boeing 747 jumbo jet—to a landing back at its launch pad. Eventually, SpaceX also intends to recover reusable Starships back at Starbase or other spaceports.

This infographic released by SpaceX shows the flight profile for SpaceX's fourth Starship launch.

Enlarge / This infographic released by SpaceX shows the flight profile for SpaceX’s fourth Starship launch.

SpaceX

Based on the results of the March test flight, SpaceX still has a lot to prove in these areas. On that flight, the engines on the Super Heavy booster could not complete all the burns required to guide the rocket toward the splashdown zone in the Gulf of Mexico. The booster lost control as it plummeted toward the ocean.

Engineers traced the failure to blockage in a filter where liquid oxygen flows into the Raptor engines. Notably, a similar problem occurred on the second Starship test flight last November. The Super Heavy booster awaiting launch Thursday has additional hardware to improve propellant filtration capabilities, according to SpaceX. The company also implemented “operational changes” on the booster for the upcoming test flight, including to jettison the Super Heavy’s staging ring, which sits between the booster and ship during launch, to reduce the rocket’s mass during descent.

SpaceX has a lot of experience bringing back its fleet of Falcon 9 boosters. The company now boasts a streak of more than 240 successful rocket landings in a row, so it’s reasonable to expect SpaceX will overcome the challenge of recovering the larger Super Heavy booster.

SpaceX is about to launch Starship again—the FAA will be more forgiving this time Read More »