Tech

netflix-will-start-showing-traditional-broadcast-channels-next-summer

Netflix will start showing traditional broadcast channels next summer

In a move that further intensifies the reflection of the cable business it’s slowly killing, Netflix will start showing broadcast channels next summer.

The world’s largest streaming provider announced today that starting next year, all Netflix subscribers in France will be able to watch broadcast channels from TF1 Group, France’s biggest commercial broadcaster, which also owns streaming services and creates content. Financial Times (FT) reported that users will be able to watch all five TF1 linear channels.

Netflix’s French customers will also gain access to “more than 30,000 hours” of on-demand TF1 content in the summer of 2026, FT reported. TF1’s content selection includes scripted dramas, reality shows like The Voice, and live sports.

Before this announcement, Netflix and TF1 were already “creative partners,” according to Netflix, and co-produced titles like Les Combattantes, a French historical miniseries whose title translates to Women at War.

The companies didn’t disclose financial details of the deal.

Traditional media’s unlikely savior

In a statement, Netflix co-CEO Greg Peters highlighted the TF1 deal as a driver of subscriber engagement, a focus that Netflix will increasingly emphasize with investors following its recent decision to stop sharing subscriber counts. Netflix claims to have “over” 300 million subscribers.

“By teaming up with France’s leading broadcaster, we will provide French consumers with even more reasons to come to Netflix every day and to stay with us for all their entertainment,” Peters said.

Meanwhile, TF1 gains advertising opportunities, as the commercials its channels show will likely attract more eyeballs in the form of Netflix subscribers.

“As viewing habits shift toward on-demand consumption and audience fragmentation increases, this unprecedented alliance will enable our premium content to reach unparalleled audiences and unlock new reach for advertisers within an ecosystem that perfectly complements our TF1+ [streaming] platform,” Rodolphe Belmer, CEO of TF1 Group, said in a statement.

Netflix will start showing traditional broadcast channels next summer Read More »

google’s-frighteningly-good-veo-3-ai-videos-to-be-integrated-with-youtube-shorts

Google’s frighteningly good Veo 3 AI videos to be integrated with YouTube Shorts

Even in the age of TikTok, YouTube viewership continues to climb. While Google’s iconic video streaming platform has traditionally pushed creators to produce longer videos that can accommodate more ads, the site’s Shorts format is growing fast. That growth may explode in the coming months, as YouTube CEO Neal Mohan has announced that the Google Veo 3 AI video generator will be integrated with YouTube Shorts later this summer.

According to Mohan, YouTube Shorts has seen a rise in popularity even compared to YouTube as a whole. The streaming platform is now the most watched source of video in the world, but Shorts specifically have seen a massive 186 percent increase in viewership over the past year. Mohan says Shorts now average 200 billion daily views.

YouTube has already equipped creators with a few AI tools, including Dream Screen, which can produce AI video backgrounds with a text prompt. Veo 3 support will be a significant upgrade, though. At the Cannes festival, Mohan revealed that the streaming site will begin offering integration with Google’s leading video model later this summer. “I believe these tools will open new creative lanes for everyone to explore,” said Mohan.

YouTube Shorts recommendations.

YouTube heavily promotes Shorts on the homepage.

Credit: Google

YouTube heavily promotes Shorts on the homepage. Credit: Google

This move will require a few tweaks to Veo 3 outputs, but it seems like a perfect match. As the name implies, YouTube Shorts is intended for short video content. The format initially launched with a 30-second ceiling, but that has since been increased to 60 seconds. Because of the astronomical cost of generative AI, each generated Veo clip is quite short, a mere eight seconds in the current version of the tool. Slap a few of those together, and you’ve got a YouTube Short.

Google’s frighteningly good Veo 3 AI videos to be integrated with YouTube Shorts Read More »

framework-laptop-12-review:-i’m-excited-to-see-what-the-2nd-generation-looks-like

Framework Laptop 12 review: I’m excited to see what the 2nd generation looks like


how much would you pay for personality?

A sturdy, thoughtful, cute design that just can’t compete in its price range.

Framework’s Laptop 12 has a lot of personality, but also a lot of shortcomings. Credit: Andrew Cunningham

Framework’s Laptop 12 has a lot of personality, but also a lot of shortcomings. Credit: Andrew Cunningham

“What’s this purple laptop? It’s cool.”

Over a decade-plus of doing gadget reviews and review-adjacent things, my wife (and, lately, my 5-year-old) have mostly stopped commenting on the ever-shifting selection of laptops I have in my bag or lying around the house at any given time. Maybe she can’t tell them apart, or maybe she just figures there isn’t that much to say about whatever black or silver metal slab I’m carrying around. Either way, they practically never elicit any kind of response, unless there are just too many of them sitting out in too many places.

But she did ask about the Framework Laptop 12, the third and latest major design in Framework’s slowly expanding lineup of modular, repairable, upgradeable laptops. With its five two-toned color options and sturdy plastic exterior, it’s definitely more approachable and friendly-looking than the Laptop 13 or Laptop 16, both metal slabs with a somewhat less-finished and prototype-y look to them. But it retains the features that a certain kind of PC geek likes about Framework’s other laptops—user-customizable and swappable ports, an easy-to-open design, first-class Linux support, and the promise of future upgrades that improve its performance and other specs.

Look and feel

The Laptop 12 stacked atop the Laptop 13. Credit: Andrew Cunningham

Plastic gets a bad rap, and there are indeed many subpar plastic gadgets out there. When done poorly, plastic can look and feel cheap, resulting in less durable devices that show more wear over time.

But well-done plastic can still feel solid and high-quality, in addition to being easier to make in different colors. Framework says the Laptop 12’s chassis is a combination of ABS plastic and TPU plastic (a more flexible, rubberized material), molded over a metal inner structure. The result is something that can probably actually take the shock of a drop or a fall better than many aluminum-and-glass laptops without feeling overly cheap or chintzy.

The five two-tone color options—the boring, businesslike black and gray, plus purple-and-gray lavender, pink-and-baby-blue bubblegum, and the green sage options—are the most fun thing about it, and the lavender and bubblegum colors are particularly eye-catching.

Keyboard and trackpad. Only the lavender and gray laptops get a color-matched trackpad; the keyboard and deck are always different shades of gray. Credit: Andrew Cunningham

Matching other components to the exterior of the system can be a bit of a crapshoot, though. The screwdriver and spudger that Framework provides for upgrading and repairing all of its systems does match the color of the laptop, and the two-tone styluses for the touchscreens will also match the laptops when they’re made available for purchase in the coming months.

The lavender option is the only one that can also be configured with a color-matched lavender trackpad—the only other trackpad option is gray, and the keyboard deck and the keyboard itself are all gray no matter what color laptop you pick. This is presumably meant to limit the number of different trackpad options that Framework has to manufacture and stock, but it is too bad that the laptop’s keyboard and palm rest aren’t as colorful as the rest of it.

The Laptop 12 also uses Framework’s still-unique Expansion Card system for customizing the built-in ports. These are all 10 Gbps USB 3.2 Gen 2 ports rather than the Thunderbolt ports on the Intel versions of the Laptop 13, but all four support the same speeds, all four support charging, and all four support display output, so you really can put whatever port you want wherever you want it.

A downside of the Laptop 12 is that, as of this writing, only the USB-C Expansion Modules are available in color-matched versions. If you want USB-A, HDMI, DisplayPort, or any other kind of port on your system, you’ll get the silver modules that were designed to match the finish on the Framework Laptops 13 and 16, so you’ll have to put up with at least one mismatched port on your otherwise adorable system.

Only the USB-C Expansion Cards are available in lavender, which can make for goofy-looking mismatches. But I do prefer the Framework 16-style retention switches to the Framework Laptop 13’s retention buttons, which you need to hold down as you pull out the Expansion Card. Credit: Andrew Cunningham

Once you get past the adorable design, the Expansion Modules, and the sturdy construction, the system’s downsides start to become more apparent. The 12.2-inch, 1920×1200 touchscreen gets plenty bright and has a respectable contrast ratio (440 nits and 1,775:1 in our testing, respectively). But it’s surrounded by thick black bezels on all sides, particularly on the bottom—it does seem that either a larger screen or a slightly smaller laptop design would be possible if so much space weren’t wasted by these thick borders.

The display has good viewing angles but a distinctly mediocre color gamut, covering around 60 percent of the SRGB color space (compared to the high 90s for the Laptop 13 and most midrange to high-end IPS screens in other laptops). This is low enough that most colors appear slightly muted and washed out—reds most noticeably, though greens aren’t much better. You definitely don’t need a colorimeter to see the difference here.

Framework’s color-matched stylus isn’t ready yet, but you won’t need to wait for one if you want to use a pen with this touchscreen. Both the Universal Stylus Initiative (USI) 2.0 and Microsoft Pen Protocol (MPP) 2.0 specs are supported, so the Surface Pen, a bunch of Lenovo styluses, and any number of inexpensive third-party Amazon styluses will all work just fine. That said, the screen can only support one of those stylus specs at a time—MPP is on by default, and you can swap between them in the BIOS settings.

The webcam and mic have locks to disable them so that the OS can’t see or use them. Credit: Andrew Cunningham

The keyboard feels mostly fine, with good key spacing and a nice amount of travel. I noticed that I was occasionally missing letters the first couple of days I used the laptop—I was pressing the keys, but they intermittently didn’t register. That got better as I adjusted to the system. The trackpad is also unremarkable in a good way. Finger tracking and multi-touch gestures all worked as intended.

But the keyboard lacks a backlight, and it doesn’t have the fingerprint sensor you get with the Laptop 13. With no fingerprint sensor and no IR webcam, there are no biometric authentication options available for use with Windows Hello, so you’ll either need a PIN or a password to unlock your laptop every time you want to use it. Either omission would be sort of annoying in a laptop in this price range (we complained about the lack of keyboard backlight in the $700 Surface Laptop Go 2 a few years ago), but to be missing both is particularly frustrating in a modern system that costs this much.

Repairs and upgrades

We’ve been inside the Framework Laptop 13 enough times that we don’t do deep dives into its insides anymore, but as a new (and, in some ways, more refined) design, the Laptop 12 warrants a closer look this time around.

Framework’s pack-in Torx screwdriver is still the only tool you need to work on the Laptop 12. Undo the eight captive screws on the bottom of the laptop, and you’ll be able to lift away the entire keyboard and trackpad area to expose all of the other internal components, including the RAM, SSD, battery, and the motherboard itself.

The motherboard is quite a bit smaller than the Framework Laptop 13 board, and the two are definitely not interchangeable. Framework has never said otherwise, but it’s worth highlighting that these are two totally separate models that will have their own distinct components and upgrade paths—that goes for parts like the speakers and battery, too.

Laptop 12 motherboard on top, Laptop 13 motherboard on bottom. Credit: Andrew Cunningham

As a result of that reduction in board space, the Laptop 12 can only fit a single DDR5 RAM slot, which reduces memory bandwidth and limits your RAM capacity to 48GB. It also uses shorter M.2 2230 SSDs, like the Surface lineup or the Steam Deck. Unlike a few years ago, these SSDs are now readily available at retail, and it’s also easy to buy warranty-less ones on eBay or elsewhere that have been pulled from OEM systems. But they’re still a bit more expensive than the more common M.2 2280 size, and you have fewer options overall.

Framework has already published a guide on setting up the DIY Edition of the laptop and a few repair guides for common components. Guides for replacing bigger or more co parts, like the display or the webcam, are still listed as “coming soon.”

Performance and battery life

I could politely describe the Laptop 12’s 2.5-year-old 13th-gen Intel Core processor as “mature.” This generation of Intel chips has stuck around for a lot longer than usual, to the point that Intel recently acknowledged that it has been dealing with shortages. They’re appealing to PC companies because they still offer decent everyday performance for basic computing without the additional costs imposed by things like on-package memory or having some or all of the chip manufactured outside of Intel’s own factories.

The upside of a slightly older processor is a more stable computing experience, in both Windows and Linux, since the companies and communities involved have had more time to add support and work out bugs; I had none of the sleep-and-wake issues or occasional video driver crashes I had while testing the Ryzen AI 300 version of the Framework Laptop 13.

The downside, of course, is that performance is pretty unexciting. These low-power U-series 12th- and 13th-gen Intel chips remain capable when it comes to day-to-day computing, but they fall far behind the likes of Intel and AMD’s newer chips, Qualcomm’s Snapdragon chips from the Microsoft Surface and other Copilot+ PCs, or the Apple M4 in the MacBook Air.

And while none of these chips are really intended for gaming laptops, the Laptop 12 isn’t even a great fit for that kind of casual Steam Deck-y 3D gaming that most Framework Laptop 13 models can handle. Technically, this is the same basic Intel Iris Xe GPU that the first few generations of Framework Laptop 13 used, which is not exciting as integrated GPUs go but is at least still minimally capable. But because the Laptop 12 only has a single RAM slot instead of two, memory bandwidth is halved, which makes the GPU identify itself as “Intel UHD Graphics” to the device manager and drags down performance accordingly. (This is something these GPUs have always done, but they usually ship in systems that either have two RAM slots or soldered-down memory, so it usually doesn’t come up.)

Framework has tuned these chips to consume the same amount of power in both the “Balanced” and “Best Performance” power modes in Windows, with a 15 W sustained power limit and a 40 W limit for shorter, bursty workloads. This keeps the laptop feeling nice and responsive for day-to-day use and helps keep a lid on power usage for battery life reasons, but it also limits its performance for extended CPU-intensive workloads like our Handbrake video encoding test.

The Laptop 12 takes a lot longer to accomplish these tasks than some other laptops we’ve tested with similar chips, either because of the lower memory bandwidth or because Best Performance mode doesn’t let the chip consume a bunch of extra power. I’m not inclined to complain too much about this because it’s not the kind of thing you really buy an ultraportable laptop to do, but as with light gaming, it’s worth noting that the Laptop 12 doesn’t hit that same “usable for these workloads in a pinch” balance that the Laptop 13 does.

The Laptop 12’s battery life is decent relative to most Laptop 13s. Credit: Andrew Cunningham

The Core i5 version of the Laptop 12 lasted around 10 hours in the PCMark Modern Office battery life test, which isn’t stunning but is a step up from what the fully specced versions of the Framework Laptop 13 can offer. It will be just fine for a long flight or a full day of work or school. Our Framework reviews often complain about battery life, but I don’t think it will be an issue here for most users.

About that price

In some ways, the Laptop 12 is trying to be a fundamentally different laptop from the Laptop 13. For all the Laptop 13’s upgrades over the years, it has never had a touchscreen option, stylus support, or a convertible hinge.

But in most of the ways that count, the Laptop 12 is meant to be an “entry-level, lower-cost laptop,” which is how Framework CEO Nirav Patel has positioned it in the company’s announcement blog posts and videos. It features a slightly smaller, lower-resolution, less colorful screen with a lower refresh rate; a non-backlit keyboard; and considerably weaker processors. It also lacks both a fingerprint reader and a face-scanning webcam for Windows Hello.

The issue is that these cost-cutting compromises come at a price that’s a bit outside of what you’d expect of a “budget” laptop.

The DIY Edition of the Laptop 12 we’re evaluating here—a version that ships with the Windows license and all the components you need but which you assemble yourself—will run you at least $1,176, depending on the Expansion Modules you choose for your ports. That includes 16GB of GDDR5 RAM and a 1TB M.2 2230 SSD, plus the Core i5-1334U processor option (2 P-cores, 8 E-cores). If you stepped down to a 500GB SSD instead, that’s still $1,116. A pre-built edition—only available in black, but with identical specifications—would run you $1,049.

The Laptop 13 compared to the Laptop 12. The Laptop 12 is missing quite a few quality-of-life things and has worse performance, but it isn’t all that much cheaper. Credit: Andrew Cunningham

This puts the Framework Laptop 12 in the same general price range as Apple’s MacBook Air, Microsoft’s 13-inch Surface Laptop, and even many editions of the Framework Laptop 13. And the Laptop 12 is charming, but its day-to-day user experience falls well short of any of those devices.

You can make it cheaper! Say you go for the Core i3-1315U version (two P-cores, four E-cores) instead, and you buy your own 16GB stick of DDR5 RAM (roughly $50 instead of $80) and 1TB SSD ($70 or $80 for a decent one, instead of $159). Say you have plenty of USB-C chargers at home so you don’t need to pay $55 for Framework’s version, and say you run Linux or ChromeOS, or you already have a Windows 11 product key, or you’ve brought your own Windows 11 key from one of those gray-market key selling sites (as little as $10).

Now we’re talking about a PC that’s a little under $700, which is closer to “reasonable” for a brand-new touchscreen PC. But the laptop’s old CPU and poky performance also mean it’s competing with a wide swath of refurbished, used, and closeout-priced older PCs from other manufacturers.

In December, for example, I bought an SSD-less Lenovo ThinkPad L13 Yoga Gen 3 from eBay for around $300, with around a year left on its warranty. After I’d added an SSD and reinstalled Windows—no additional cost because it had a valid Windows license already—I ended up with a PC with the same screen resolution and similar specs but with a better-quality display with smaller bezels that made the screen larger without making the laptop larger; a faster GPU configuration; a backlit keyboard; and a fingerprint reader.

I know it’s not possible for everyone to just go out and buy a laptop like this. The boring black outline of a midrange ThinkPad is also the polar opposite of the Framework Laptop 12, but it’s an example of what the tech-savvy buyer can find in the secondhand market if you’re trying to find a cost-effective alternative to what Framework is offering here.

A good laptop, but not a good value

The Framework Laptop 12. Credit: Andrew Cunningham

There are plenty of factors beyond Framework’s control that contribute to the Laptop 12’s price, starting with on-again-off-again global trade wars and the uncertainty that comes with them. There’s also Framework’s status as a niche independent PC company rather than a high-volume behemoth. When you ship the number of computers that Apple does, it’s almost certainly easier to make a $999 laptop that is both premium and profitable.

But whatever the reason, I can’t escape the feeling that the Laptop 12 was meant to be cheaper than it has ended up being. The result is a computer with many of the compromises of an entry-level system, but without a matching entry-level price tag. It’s hard to put a price on some of the less-tangible benefits of a Framework laptop, like ease of repairs and the promise of future upgrades, but my gut feeling is that the Framework Laptop 13 falls on the “right” side of that line, and the Laptop 12 doesn’t.

I am charmed by the Laptop 12. It’s cute and functional, and it stands out among high-end aluminum slabs. It adds some subtle refinement to elements of the original Framework Laptop 13 design, including some things I hope end up making it into some future iteration of its design—softer corners, more color options, and an easier-to-install keyboard and trackpad. And it’s far from a bad performer for day-to-day desktop use; it’s just that the old, poky processor limits its capabilities compared to other PCs that don’t cost that much more than it does.

I probably wouldn’t recommend this over the Laptop 13 for anyone interested in what Framework is doing, unless a touchscreen is a make-or-break feature, and even then, I’d encourage people to take a good, long look at Microsoft, Lenovo, Dell, or HP’s convertible offerings first. But I hope that Framework does what it’s done for the Laptop 13 over the last four or so years: introduce updated components, iterate on different elements of the design, and gradually bring the price down into a more reasonable range through refurbished and factory-second parts. As a $1,000-ish computer, this leaves a lot to be desired. But as the foundation for a new Framework platform, it has enough promise to be interesting.

The good

  • Eye-catching, colorful, friendly design that stands out among metal slabs.
  • Simple to build, repair, and upgrade.
  • Dual-plastic design over a metal frame is good for durability.
  • First convertible touchscreen in the Framework laptop.
  • Customizable ports.
  • Decent performance for everyday computing.
  • Respectable battery life.

The bad

  • Old, slow chip isn’t really suitable for light gaming or heavy productivity work that the larger Framework Laptop 13 can do.
  • Pre-built laptop only comes in boring black.
  • Mediocre colors and large bezels spoil the screen.
  • Keyboard sometimes felt like it was missing keystrokes until I had adjusted to compensate.

The ugly

  • It’s just too expensive for what it is. It looks and feels like a lower-cost laptop, but without a dramatically lower price than the nicer, faster Framework 13.

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

Framework Laptop 12 review: I’m excited to see what the 2nd generation looks like Read More »

the-macbook-air-is-the-obvious-loser-as-the-sun-sets-on-the-intel-mac-era

The MacBook Air is the obvious loser as the sun sets on the Intel Mac era


In the end, Intel Macs have mostly gotten a better deal than PowerPC Macs did.

For the last three years, we’ve engaged in some in-depth data analysis and tea-leaf reading to answer two questions about Apple’s support for older Macs that still use Intel chips.

First, was Apple providing fewer updates and fewer years of software support to Macs based on Intel chips as it worked to transition the entire lineup to its internally developed Apple Silicon? And second, how long could Intel Mac owners reasonably expect to keep getting updates?

The answer to the first question has always been “it depends, but generally yes.” And this year, we have a definitive answer to the second question: For the bare handful of Intel Macs it supports, macOS 26 Tahoe will be the final new version of the operating system to support any of Intel’s chips.

To its credit, Apple has also clearly spelled this out ahead of time rather than pulling the plug on Intel Macs with no notice. The company has also said that it plans to provide security updates for those Macs for two years after Tahoe is replaced by macOS 27 next year. These Macs aren’t getting special treatment—this has been Apple’s unspoken, unwritten policy for macOS security updates for decades now—but to look past its usual “we don’t comment on our future plans” stance to give people a couple years of predictability is something we’ve been pushing Apple to do for a long time.

With none of the tea leaf reading left to do, we can now present a fairly definitive look at how Apple has handled the entire Intel transition, compare it to how the PowerPC-to-Intel switch went two decades ago, and predict what it might mean about support for Apple Silicon Macs.

The data

We’ve assembled an epoch-spanning spreadsheet of every PowerPC or Intel Mac Apple has released since the original iMac kicked off the modern era of Apple back in 1998. On that list, we’ve recorded the introduction date for each Mac, the discontinuation date (when it was either replaced or taken off the market), the version of macOS it shipped with, and the final version of macOS it officially supported.

For those macOS versions, we’ve recorded the dates they received their last major point update—these are the feature-adding updates these releases get when they’re Apple’s latest and greatest version of macOS, as macOS 15 Sequoia is right now. After replacing them, Apple releases security-only patches and Safari browser updates for old macOS versions for another two years after replacing them, so we’ve also recorded the dates that those Macs would have received their final security update. For Intel Macs that are still receiving updates (versions 13, 14, and 15) and macOS 26 Tahoe, we’ve extrapolated end-of-support dates based on Apple’s past practices.

A 27-inch iMac model. It’s still the only Intel Mac without a true Apple Silicon replacement. Credit: Andrew Cunningham

We’re primarily focusing on two time spans: from the date of each Mac’s introduction to the date it stopped receiving major macOS updates, and from the date of each Mac’s introduction to the date it stopped receiving any updates at all. We consider any Macs inside either of these spans to be actively supported; Macs that are no longer receiving regular updates from Apple will gradually become less secure and less compatible with modern apps as time passes. We measure by years of support rather than number of releases, which controls for Apple’s transition to a once-yearly release schedule for macOS back in the early 2010s.

We’ve also tracked the time between each Mac model’s discontinuation and when it stopped receiving updates. This is how Apple determines which products go on its “vintage” and “obsolete” hardware lists, which determine the level of hardware support and the kinds of repairs that the company will provide.

We have lots of detailed charts, but here are some highlights:

  • For all Mac models tracked, the average Mac receives about 6.6 years of macOS updates that add new features, plus another two years of security-only updates.
  • If you only count the Intel era, the average is around seven years of macOS updates, plus two years of security-only patches.
  • Most (though not all) Macs released since 2016 come in lower than either of these averages, indicating that Apple has been less generous to most Intel Macs since the Apple Silicon transition began.
  • The three longest-lived Macs are still the mid-2007 15- and 17-inch MacBook Pros, the mid-2010 Mac Pro, and the mid-2007 iMac, which received new macOS updates for around nine years after their introduction (and security updates for around 11 years).
  • The shortest-lived Mac is still the late-2008 version of the white MacBook, which received only 2.7 years of new macOS updates and another 3.3 years of security updates from the time it was introduced. (Late PowerPC-era and early Intel-era Macs are all pretty bad by modern standards.)

The charts

If you bought a Mac any time between 2016 and 2020, you’re generally settling for fewer years of software updates than you would have gotten in the recent past. If you bought a Mac released in 2020, the tail end of the Intel era when Apple Silicon Macs were around the corner, your reward is the shortest software support window since 2006.

There are outliers in either direction. The sole iMac Pro, introduced in 2017 as Apple tried to regain some of its lost credibility with professional users, will end up with 7.75 years of updates plus another two years of security updates when all is said and done. Buyers of 2018–2020 MacBook Airs and the two-port version of the 2020 13-inch MacBook Pro, however, are treated pretty poorly, getting not quite 5.5 years of updates (plus two years of security patches) on average from the date they were introduced.

That said, most Macs usually end up getting a little over six years of macOS updates and two more years of security updates. If that’s a year or two lower than the recent past, it’s also not ridiculously far from the historical average.

If there’s something to praise here, it’s interesting that Apple doesn’t seem to treat any of its Macs differently based on how much they cost. Now that we have a complete overview of the Intel era, breaking out the support timelines by model rather than by model year shows that a Mac mini doesn’t get dramatically more or less support than an iMac or a Mac Pro, despite costing a fraction of the price. A MacBook Air doesn’t receive significantly more or less support than a MacBook Pro.

These are just averages, and some models are lucky while others are not. The no-adjective MacBook that Apple has sold on and off since 2006 is also an outlier, with fewer years of support on average than the other Macs.

If there’s one overarching takeaway, it’s that you should buy new Macs as close to the date of their introduction as possible if you want to maximize your software support window. Especially for Macs that were sold continuously for years and years—the 2013 and 2019 Mac Pro, the 2018 Mac mini, the non-Retina 2015 MacBook Air that Apple sold some version of for over four years—buying them toward the end of their retail lifecycle means settling for years of fewer updates than you would have gotten if you had waited for the introduction of a new model. And that’s true even though Apple’s hardware support timelines are all calculated from the date of last availability rather than the date of introduction.

It just puts Mac buyers in a bad spot when Apple isn’t prompt with hardware updates, forcing people to either buy something that doesn’t fully suit their needs or settle for something older that will last for fewer years.

What should you do with an older Intel Mac?

The big question: If your Intel Mac is still functional but Apple is no longer supporting it, is there anything you can do to keep it both secure and functional?

All late-model Intel Macs officially support Windows 10, but that OS has its own end-of-support date looming in October 2025. Windows 11 can be installed, but only if you bypass its system requirements, which can work well, but it does require additional fiddling when it comes time to install major updates. Consumer-focused Linux distributions like Ubuntu, Mint, or Pop!_OS may work, depending on your hardware, but they come with a steep learning curve for non-technical users. Google’s ChromeOS Flex may also work, but ChromeOS is more functionally limited than most other operating systems.

The OpenCore Legacy Patcher provides one possible stay of execution for Mac owners who want to stay on macOS for as long as they can. But it faces two steep uphill climbs in macOS Tahoe. First, as Apple has removed more Intel Macs from the official support list, it has removed more of the underlying code from macOS that is needed to support those Macs and other Macs with similar hardware. This leaves more for the OpenCore Configurator team to have to patch in from older OSes, and this kind of forward-porting can leave hardware and software partly functional or non-functional.

Second, there’s the Apple T2 to consider. The Macs with a T2 treat it as a load-bearing co-processor, responsible for crucial operating system functions such as enabling Touch ID, serving as an SSD controller, encoding and decoding videos, communicating with the webcam and built-in microphone, and other operations. But Apple has never opened the T2 up to anyone, and it remains a bit of a black box for both the OpenCore/Hackintosh community and folks who would run Linux-based operating systems like Ubuntu or ChromeOS on that hardware.

The result is that the 2018 and 2019 MacBook Airs that didn’t support macOS 15 Sequoia last year never had support for them added to the OpenCore Legacy Patcher because the T2 chip simply won’t communicate with OpenCore firmware booted. Some T2 Macs don’t have this problem. But if yours does, it’s unlikely that anyone will be able to do anything about it, and your software support will end when Apple says it does.

Does any of this mean anything for Apple Silicon Mac support?

Late-model Intel MacBook Airs have fared worse than other Macs in terms of update longevity. Credit: Valentina Palladino

It will likely be at least two or three years before we know for sure how Apple plans to treat Apple Silicon Macs. Will the company primarily look at specs and technical capabilities, as it did from the late-’90s through to the mid-2010s? Or will Apple mainly stop supporting hardware based on its age, as it has done for more recent Macs and most current iPhones and iPads?

The three models to examine for this purpose are the first ones to shift to Apple Silicon: the M1 versions of the MacBook Air, Mac mini, and 13-inch MacBook Pro, all launched in late 2020. If these Macs are dropped in, say, 2027 or 2028’s big macOS release, but other, later M1 Macs like the iMac stay supported, it means Apple is likely sticking to a somewhat arbitrary age-based model, with certain Macs cut off from software updates that they are perfectly capable of running.

But it’s our hope that all Apple Silicon Macs have a long life ahead of them. The M2, M3, and M4 have all improved on the M1’s performance and other capabilities, but the M1 Macs are much more capable than the Intel ones they supplanted, the M1 was used so widely in various Mac models for so long, and Mac owners can pay so much more for their devices than iPhone and iPad owners. We’d love to see macOS return to the longer-tail software support it provided in the late-’00s and mid-2010s, when models could expect to see seven or eight all-new macOS versions and another two years of security updates afterward.

All signs point to Apple using the launch date of any given piece of hardware as the determining factor for continued software support. But that isn’t how it has always been, nor is it how it always has to be.

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

The MacBook Air is the obvious loser as the sun sets on the Intel Mac era Read More »

google-can-now-generate-a-fake-ai-podcast-of-your-search-results

Google can now generate a fake AI podcast of your search results

NotebookLM is undoubtedly one of Google’s best implementations of generative AI technology, giving you the ability to explore documents and notes with a Gemini AI model. Last year, Google added the ability to generate so-called “audio overviews” of your source material in NotebookLM. Now, Google has brought those fake AI podcasts to search results as a test. Instead of clicking links or reading the AI Overview, you can have two nonexistent people tell you what the results say.

This feature is not currently rolling out widely—it’s available in search labs, which means you have to manually enable it. Anyone can opt in to the new Audio Overview search experience, though. If you join the test, you’ll quickly see the embedded player in Google search results. However, it’s not at the top with the usual block of AI-generated text. Instead, you’ll see it after the first few search results, below the “People also ask” knowledge graph section.

Credit: Google

Google isn’t wasting resources to generate the audio automatically, so you have to click the generate button to get started. A few seconds later, you’re given a back-and-forth conversation between two AI voices summarizing the search results. The player includes a list of sources from which the overview is built, as well as the option to speed up or slow down playback.

Google can now generate a fake AI podcast of your search results Read More »

inside-the-firm-turning-eerie-blank-streaming-ads-into-useful-nonprofit-messages

Inside the firm turning eerie blank streaming ads into useful nonprofit messages

AdGood’s offerings also include a managed service for ad campaign management for nonprofits. AdGood doesn’t yet offer pixels, but Johns said developments like that are “in the works.”

Johns explained that while many nonprofits use services like Meta and Google AdWords for tracking ads, they’re “hitting plateaus” with their typical methods. He said there is nonprofit interest in reaching younger audiences, who often use CTV devices:

A lot of them have been looking for ways to get [into CTV ads], but, unfortunately, with minimum spend amounts, they’re just not able to access it.

Helping nonprofits make commercials

AdGood also sells a self-serve generative AI ad manager, which it offers via a partnership with Streamr.AI. The tool is designed to simplify the process of creating 30-second video ads that are “completely editable via a chat prompt,” according to Johns.

“It automatically generates all their targeting. They can update their targeting for whatever they want, and then they can swipe a credit card and essentially run that campaign. It goes into our approval queue, which typically takes 24 hours for us to approve because it needs to be deemed TV-quality,” he explained.

The executive said AdGood charges nonprofits a $7 CPM and a $250 flat fee for the service. He added:

Think about a small nonprofit in a local community, for instance, my son’s special needs baseball team. I can get together with five other parents, easily pull together a campaign, and run it in our local town. We get seven kids to show up, and it changes their lives. We’re talking about $250 having a massive impact in a local market.

Looking ahead, Johns said he’d like to see AdGood’s platform and team grow to be able to give every customer “a certain allocation of inventory, whether it’s 50,000 impressions a month or 100,000 a month.”

For some, streaming ads are rarely a good thing. But when those ads can help important causes and replace odd blank ad spaces that make us question our own existence, it brings new meaning to the idea of a “good” commercial.

Inside the firm turning eerie blank streaming ads into useful nonprofit messages Read More »

another-one-for-the-graveyard:-google-to-kill-instant-apps-in-december

Another one for the graveyard: Google to kill Instant Apps in December

But that was then, and this is now. Today, an increasing number of mobile apps are functionally identical to the mobile websites they are intended to replace, and developer uptake of Instant Apps was minimal. Even in 2017, loading an app instead of a website had limited utility. As a result, most of us probably only encountered Instant Apps a handful of times in all the years it was an option for developers.

To use the feature, which was delivered to virtually all Android devices by Google Play Services, developers had to create a special “instant” version of their app that was under 15MB. The additional legwork to get an app in front of a subset of new users meant this was always going to be a steep climb, and Google struggles to incentivize developers to adopt new features. Plus, there’s no way to cram in generative AI! So it’s not a shock to see Google retiring the feature.

This feature is currently listed in the collection of Google services in your phone settings as “Google Play Instant.” Unfortunately, there aren’t many examples still available if you’re curious about what Instant Apps were like—the Finnish publisher Ilta-Sanomat is one of the few still offering it. Make sure the settings toggle for Instant Apps is on if you want a little dose of nostalgia.

Another one for the graveyard: Google to kill Instant Apps in December Read More »

ai-overviews-hallucinates-that-airbus,-not-boeing,-involved-in-fatal-air-india-crash

AI Overviews hallucinates that Airbus, not Boeing, involved in fatal Air India crash

When major events occur, most people rush to Google to find information. Increasingly, the first thing they see is an AI Overview, a feature that already has a reputation for making glaring mistakes. In the wake of a tragic plane crash in India, Google’s AI search results are spreading misinformation claiming the incident involved an Airbus plane—it was actually a Boeing 787.

Travelers are more attuned to the airliner models these days after a spate of crashes involving Boeing’s 737 lineup several years ago. Searches for airline disasters are sure to skyrocket in the coming days, with reports that more than 200 passengers and crew lost their lives in the Air India Flight 171 crash. The way generative AI operates means some people searching for details may get the wrong impression from Google’s results page.

Not all searches get AI answers, but Google has been steadily expanding this feature since it debuted last year. One searcher on Reddit spotted a troubling confabulation when searching for crashes involving Airbus planes. AI Overviews, apparently overwhelmed with results reporting on the Air India crash, stated confidently (and incorrectly) that it was an Airbus A330 that fell out of the sky shortly after takeoff. We’ve run a few similar searches—some of the AI results say Boeing, some say Airbus, and some include a strange mashup of both Airbus and Boeing. It’s a mess.

In this search, Google’s AI says the crash involved an Airbus A330 instead of a Boeing 787.

Credit: /u/stuckintrraffic

In this search, Google’s AI says the crash involved an Airbus A330 instead of a Boeing 787. Credit: /u/stuckintrraffic

But why is Google bringing up the Air India crash at all in the context of Airbus? Unfortunately, it’s impossible to predict if you’ll get an AI Overview that blames Boeing or Airbus—generative AI is non-deterministic, meaning the output is different every time, even for identical inputs. Our best guess for the underlying cause is that numerous articles on the Air India crash mention Airbus as Boeing’s main competitor. AI Overviews is essentially summarizing these results, and the AI goes down the wrong path because it lacks the ability to understand what is true.

AI Overviews hallucinates that Airbus, not Boeing, involved in fatal Air India crash Read More »

google-left-months-old-dark-mode-bug-in-android-16,-fix-planned-for-next-pixel-drop

Google left months-old dark mode bug in Android 16, fix planned for next Pixel Drop

Google’s Pixel phones got a big update this week with the release of Android 16 and a batch of Pixel Drop features. Pixels now have enhanced security, new contact features, and improved button navigation. However, some of the most interesting features, like desktop windowing and Material 3 Expressive, are coming later. Another thing that’s coming later, it seems, is a fix for an annoying bug Google introduced a few months back.

Google broke the system dark mode schedule in its March Pixel update and did not address it in time for Android 16. The company confirms a fix is coming, though.

The system-level dark theme arrives in Android 10 to offer a less eye-searing option, which is particularly handy in dark environments. It took a while for even Google’s apps to fully adopt this feature, but support is solid five years later. Google even offers a scheduling feature to switch between light and dark mode at custom times or based on sunrise/sunset. However, the scheduling feature was busted in the March update.

Currently, if you manually toggle dark mode on or off, schedules stop working. The only way to get them back is to set up your schedule again and then never toggle dark mode. Google initially marked this as “intended behavior,” but a more recent bug report was accepted as a valid issue.

Google left months-old dark mode bug in Android 16, fix planned for next Pixel Drop Read More »

amazon-prime-video-subscribers-sit-through-up-to-6-minutes-of-ads-per-hour

Amazon Prime Video subscribers sit through up to 6 minutes of ads per hour

Amazon forced all Prime Video subscribers onto a new ad-based subscription tier in January 2024 unless users paid more for their subscription type. Now, the tech giant is reportedly showing twice as many ads to subscribers as it did when it started selling ad-based streaming subscriptions.

Currently, anyone who signs up for Amazon Prime (which is $15 per month or $139 per year) gets Prime Video with ads. If they don’t want to see commercials, they have to pay an extra $3 per month. One can also subscribe to Prime Video alone for $9 per month with ads or $12 per month without ads.

When Amazon originally announced the ad tier, it said it would deliver “meaningfully fewer ads than linear TV and other streaming TV providers.” Based on “six ad buyers and documents” ad trade publication AdWeek reported viewing, Amazon has determined the average is four to six minutes of advertisements per hour.

“Prime Video ad load has gradually increased to four to six minutes per hour,” an Amazon representative said via email to an ad buyer this month, AdWeek reported.

That would mean that Prime Video subscribers are spending significantly more time sitting through ads than they did at the launch of Prime Video with ads. According to a report from The Wall Street Journal (WSJ) at the time, which cited an Amazon presentation it said it reviewed, “the average ad load at launch was two to three-and-a-half minutes.” However, when reached for comment, an Amazon Ads representative told Ars Technica that the WSJ didn’t confirm that figure directly with Amazon.

Amazon’s Ads spokesperson, however, declined to specify to Ars how many ads Amazon typically shows to Prime Videos subscribers today or in the past.

Instead, they shared a statement saying:

We remain focused on prioritizing ad innovation over volume. While demand continues to grow, our commitment is to improving ad experiences rather than simply increasing the number of ads shown. Since the beginning of this year alone, we’ve announced multiple capabilities, including Brand+, Complete TV, and new ad formats—all designed to deliver industry-leading relevancy and enhanced customer experiences. We will continue to invest in this important work, creating meaningful innovations that benefit both customers and advertisers alike.

Kendra Tang, programmatic supervisor at ad firm Rain the Growth Agency, told AdWeek that Amazon “told us the ad load would be increasing” and that she’s seen more ad opportunities made available in Amazon’s ad system.

Amazon Prime Video subscribers sit through up to 6 minutes of ads per hour Read More »

apple’s-craig-federighi-on-the-long-road-to-the-ipad’s-mac-like-multitasking

Apple’s Craig Federighi on the long road to the iPad’s Mac-like multitasking


Federighi talks to Ars about why the iPad’s Mac-style multitasking took so long.

Apple press photograph of iPads running iPadOS 26

iPads! Running iOS 26! Credit: Apple

iPads! Running iOS 26! Credit: Apple

CUPERTINO, Calif.—When Apple Senior Vice President of Software Engineering Craig Federighi introduced the new multitasking UI in iPadOS 26 at the company’s Worldwide Developers Conference this week, he did it the same way he introduced the Calculator app for the iPad last year or timers in the iPad’s Clock app the year before—with a hint of sarcasm.

“Wow,” Federighi enthuses in a lightly exaggerated tone about an hour and 19 minutes into a 90-minute presentation. “More windows, a pointier pointer, and a menu bar? Who would’ve thought? We’ve truly pulled off a mind-blowing release!”

This elicits a sensible chuckle from the gathered audience of developers, media, and Apple employees watching the keynote on the Apple Park campus, where I have grabbed myself a good-but-not-great seat to watch the largely pre-recorded keynote on a gigantic outdoor screen.

Federighi is acknowledging—and lightly poking fun at—the audience of developers, pro users, and media personalities who have been asking for years that Apple’s iPad behave more like a traditional computer. And after many incremental steps, including a big swing and partial miss with the buggy, limited Stage Manager interface a couple of years ago, Apple has finally responded to requests for Mac-like multitasking with a distinctly Mac-like interface, an improved file manager, and better support for running tasks in the background.

But if this move was so forehead-slappingly obvious, why did it take so long to get here? This is one of the questions we dug into when we sat down with Federighi and Senior Vice President of Worldwide Marketing Greg Joswiak for a post-keynote chat earlier this week.

It used to be about hardware restrictions

People have been trying to use iPads (and make a philosophical case for them) as quote-unquote real computers practically from the moment they were introduced 15 years ago.

But those early iPads lacked so much of what we expect from modern PCs and Macs, most notably robust multi-window multitasking and the ability for third-party apps to exchange data. The first iPads were almost literally just iPhone internals connected to big screens, with just a fraction of the RAM and storage available in the Macs of the day; that necessitated the use of a blown-up version of the iPhone’s operating system and the iPhone’s one-full-screen-app-at-a-time interface.

“If you want to rewind all the way to the time we introduced Split View and Slide Over [in iOS 9], you have to start with the grounding that the iPad is a direct manipulation touch-first device,” Federighi told Ars. “It is a foundational requirement that if you touch the screen and start to move something, that it responds. Otherwise, the entire interaction model is broken—it’s a psychic break with your contract with the device.”

Mac users, Federighi said, were more tolerant of small latency on their devices because they were already manipulating apps on the screen indirectly, but the iPads of a decade or so ago “didn’t have the capacity to run an unlimited number of windowed apps with perfect responsiveness.”

It’s also worth noting the technical limitations of iPhone and iPad apps at the time, which up until then had mostly been designed and coded to match the specific screen sizes and resolutions of the (then-manageable) number of iDevices that existed. It simply wasn’t possible for the apps of the day to be dynamically resized as desktop windows are, because no one was coding their apps that way.

Apple’s iPad Pros—and, later, the iPad Airs—have gradually adopted hardware and software features that make them more Mac-like. Credit: Andrew Cunningham

Of course, those hardware limitations no longer exist. Apple’s iPad Pros started boosting the tablets’ processing power, RAM, and storage in earnest in the late 2010s, and Apple introduced a Microsoft Surface-like keyboard and stylus accessories that moved the iPad away from its role as a content consumption device. For years now, Apple’s faster tablets have been based on the same hardware as its slower Macs—we know the hardware can do more because Apple is already doing more with it elsewhere.

“Over time the iPad’s gotten more powerful, the screens have gotten larger, the user base has shifted into a mode where there is a little bit more trackpad and keyboard use in how many people use the device,” Federighi told Ars. “And so the stars kind of aligned to where many of the things that you traditionally do with a Mac were possible to do on an iPad for the first time and still meet iPad’s basic contract.”

On correcting some of Stage Manager’s problems

More multitasking in iPadOS 26. Credit: Apple

Apple has already tried a windowed multitasking system on modern iPads once this decade, of course, with iPadOS 16’s Stage Manager interface.

Any first crack at windowed multitasking on the iPad was going to have a steep climb. This was the first time Apple or its developers had needed to contend with truly dynamically resizable app windows in iOS or iPadOS, the first time Apple had implemented a virtual memory system on the iPad, and the first time Apple had tried true multi-monitor support. Stage Manager was in such rough shape that Apple delayed that year’s iPadOS release to keep working on it.

But the biggest problem with Stage Manager was actually that it just didn’t work on a whole bunch of iPads. You could only use it on new expensive models—if you had a new cheap model or even an older expensive model, your iPad was stuck with the older Slide Over and Split View modes that had been designed around the hardware limitations of mid-2010s iPads.

“We wanted to offer a new baseline of a totally consistent experience of what it meant to have Stage Manager,” Federighi told Ars. “And for us, that meant four simultaneous apps on the internal display and an external display with four simultaneous apps. So, eight apps running at once. And we said that’s the baseline, and that’s what it means to be Stage Manager; we didn’t want to say ‘you get Stage Manager, but you get Stage Manager-lite here or something like that. And so immediately that established a floor for how low we could go.”

Fixing that was one of the primary goals of the new windowing system.

“We decided this time: make everything we can make available,” said Federighi, “even if it has some nuances on older hardware, because we saw so much demand [for Stage Manager].”

That slight change in approach, combined with other behind-the-scenes optimizations, makes the new multitasking model more widely compatible than Stage Manager is. There are still limits on those devices—not to the number of windows you can open, but to how many of those windows can be active and up-to-date at once. And true multi-monitor support would remain the purview of the faster, more-expensive models.

“We have discovered many, many optimizations,” Federighi said. “We re-architected our windowing system and we re-architected the way that we manage background tasks, background processing, that enabled us to squeeze more out of other devices than we were able to do at the time we introduced Stage Manager.”

Stage Manager still exists in iPadOS 26, but as an optional extra multitasking mode that you have to choose to enable instead of the new windowed multitasking system. You can also choose to turn both multitasking systems off entirely, preserving the iPad’s traditional big-iPhone-for-watching-Netflix interface for the people who prefer it.

“iPad’s gonna be iPad”

The $349 base-model iPad is one that stands to gain the most from iPadOS 26. Credit: Andrew Cunningham

However, while the new iPadOS 26 UI takes big steps toward the Mac’s interface, the company still tries to treat them as different products with different priorities. To date, that has meant no touch screens on the Mac (despite years of rumors), and it will continue to mean that there are some Mac things that the iPad will remain unable to do.

“But we’ve looked and said, as [the iPad and Mac] come together, where on the iPad the Mac idiom for doing something, like where we put the window close controls and maximize controls, what color are they—we’ve said why not, where it makes sense, use a converged design for those things so it’s familiar and comfortable,” Federighi told Ars. “But where it doesn’t make sense, iPad’s gonna be iPad.”

There will still be limitations and frustrations when trying to fit an iPad into a Mac-shaped hole in your computing setup. While tasks can run in the background, for example, Apple only allows apps to run workloads with a definitive endpoint, things like a video export or a file transfer. System agents or other apps that perform some routine on-and-off tasks continuously in the background aren’t supported. All the demos we’ve seen so far are also on new, high-end iPad hardware, and it remains to be seen how well the new features behave on low-end tablets like the 11th-generation A16 iPad, or old 2019-era hardware like the iPad Air 3.

But it does feel like Apple has finally settled on a design that might stick and that adds capability to the iPad without wrecking its simplicity for the people who still just want a big screen for reading and streaming.

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

Apple’s Craig Federighi on the long road to the iPad’s Mac-like multitasking Read More »

hp-reveals-first-google-beam-3d-video-conferencing-setup,-priced-at-$25,000

HP reveals first Google Beam 3D video conferencing setup, priced at $25,000

Amid all the Gemini hype at Google I/O last month, the company also turned one of its experiments into a (kind of) real product. Project Starline was reborn as Google Beam, a 3D video conferencing system that makes it look like you’re in the same room with the other party. Google said HP would reveal the first Beam setup, and now it has. The HP Dimension is coming this year, and the price tag is a predictably hefty $24,999.

Google Beam calls for a lot of advanced hardware, so the high price isn’t a surprise. The HP Dimension uses six high-speed cameras positioned around the display to capture the speaker from multiple angles. This visual data is then fed into Google’s proprietary volumetric video model, which merges the streams together into a 3D reconstruction of the speaker.

Eventually, there will be Beam systems of various sizes, but the HP model comes with a big 65-inch display. All Beam systems will use light field screen technology, which can show the volumetric model in 3D, eliminating the need to wear a headset or glasses for the 3D effect. Google says Beam can show minute details at 60 fps with millimeter-scale precision.

Obscene price tag aside, Google Beam is impressive technology. We got a glimpse of it at Google I/O, and it really does look like the person you’re talking to is on the other side of the table. Google and HP claim that Beam’s 3D video makes meetings more efficient, with better display of non-verbal cues and participants experiencing improved recall of details versus a regular 2D chat. Google also promises its Meet-based live translation features will come to Beam later.

HP reveals first Google Beam 3D video conferencing setup, priced at $25,000 Read More »