texas

measles-outbreak-in-undervaccinated-texas-area-doubles—again

Measles outbreak in undervaccinated Texas area doubles—again

A measles outbreak in an area of Texas with abysmal vaccination rates continues to mushroom, with cases doubling since Tuesday and expanding into additional counties.

A week ago, officials reported nine confirmed cases in Gaines County, at the border of New Mexico, which has one of the lowest vaccination rates among kindergartners in the state at just about 82 percent. On Tuesday, the cases climbed to 24, all in Gaines. In Friday’s update, the state health department reports that the case count has now reached 48 and spread to three nearby counties, which also have vaccination rates below the 95 percent threshold that prevent vaccine-preventable diseases from spreading onward.

Gaines now reports 42 cases. There’s one case reported in Lynn County to the northeast, which has a 91 percent vaccination rate. Terry County, with a vaccination rate of 94 percent, reports three cases, and Yoakum County, with a vaccination rate of 92.5 percent, reports two cases. Terry and Yoakum are both directly north of Gaines.

As before, all cases are in unvaccinated people or people with unknown vaccination status. Of the 48 cases, 42 are in children, including 13 between the ages of 0 and 4. Thirteen people (27 percent) have been hospitalized.

Measles outbreak in undervaccinated Texas area doubles—again Read More »

nine-unvaccinated-people-hospitalized-as-texas-measles-outbreak-doubles

Nine unvaccinated people hospitalized as Texas measles outbreak doubles

In an interview with Ars Technica last week, Zach Holbrooks, the executive director of the South Plains Public Health District (SPPHD), which includes Gaines, said that the area has a large religious community that has expressed vaccine hesitancy.

Additional cases likely

Pockets of the county have yet lower vaccination rates than the county-wide averages suggest. For instance, one independent public school district in Loop, in the northeast corner of Gaines, had a vaccination rate of 46 percent in the 2023–2024 school year.

Measles is one of the most infectious diseases known. The measles virus spreads through the air and can linger in the airspace of a room for up to two hours after an infected person has left. Ninety percent of unvaccinated people who are exposed will fall ill with the disease, which is marked by a very high fever and a telltale rash. Typically, 1 in 5 unvaccinated people with measles in the US end up hospitalized, and 1 in 20 develop pneumonia. Between 1 to 3 in 1,000 die of the infection. In rare cases, it can cause a fatal disease of the central nervous system called Subacute sclerosing panencephalitis later in life. Measles can also wipe out immune responses to other infections (a phenomenon known as immune amnesia), making people vulnerable to other infectious diseases.

“Due to the highly contagious nature of this disease, additional cases are likely to occur in Gaines County and the surrounding communities,” the state health department said.

While Gaines is remarkable for its low vaccination rate, vaccination coverage nationwide has slipped in recent years as vaccine misinformation and hesitancy have taken root. Overall, vaccination rates among US kindergartners have fallen from 95 percent in the 2019–2020 school year into the 92 percent range in the 2023–2024 school year. Vaccine exemptions, meanwhile, have hit an all-time high. Health experts expect to see more vaccine-preventable outbreaks, like the one in Gaines, as the trend continues.

Nine unvaccinated people hospitalized as Texas measles outbreak doubles Read More »

trump-announces-$500b-“stargate”-ai-infrastructure-project-with-agi-aims

Trump announces $500B “Stargate” AI infrastructure project with AGI aims

Video of the Stargate announcement conference at the White House.

Despite optimism from the companies involved, as CNN reports, past presidential investment announcements have yielded mixed results. In 2017, Trump and Foxconn unveiled plans for a $10 billion Wisconsin electronics factory promising 13,000 jobs. The project later scaled back to a $672 million investment with fewer than 1,500 positions. The facility now operates as a Microsoft AI data center.

The Stargate announcement wasn’t Trump’s only major AI move announced this week. It follows the newly inaugurated US president’s reversal of a 2023 Biden executive order on AI risk monitoring and regulation.

Altman speaks, Musk responds

On Tuesday, OpenAI CEO Sam Altman appeared at a White House press conference alongside Present Trump, Oracle CEO Larry Ellison, and SoftBank CEO Masayoshi Son to announce Stargate.

Altman said he thinks Stargate represents “the most important project of this era,” allowing AGI to emerge in the United States. He believes that future AI technology could create hundreds of thousands of jobs. “We wouldn’t be able to do this without you, Mr. President,” Altman added.

Responding to off-camera questions from Trump about AI’s potential to spur scientific development, Altman said he believes AI will accelerate the discoveries for cures of diseases like cancer and heart disease.

Screenshots of Elon Musk challenging the Stargate announcement on X.

Screenshots of Elon Musk challenging the Stargate announcement on X.

Meanwhile on X, Trump ally and frequent Altman foe Elon Musk immediately attacked the Stargate plan, writing, “They don’t actually have the money,” and following up with a claim that we cannot yet substantiate, saying, “SoftBank has well under $10B secured. I have that on good authority.”

Musk’s criticism has complex implications given his very close ties to Trump, his history of litigating against OpenAI (which he co-founded and later left), and his own goals with his xAI company.

Trump announces $500B “Stargate” AI infrastructure project with AGI aims Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »

texas-defends-requiring-id-for-porn-to-scotus:-“we’ve-done-this-forever”

Texas defends requiring ID for porn to SCOTUS: “We’ve done this forever”

“You can use VPNs, the click of a button, to make it seem like you’re not in Texas,” Shaffer argued. “You can go through the search engines, you can go through social media, you can access the same content in the ways that kids are likeliest to do.”

Texas attorney Aaron Nielson argued that the problem of kids accessing porn online has only gotten “worse” in the decades since Texas has been attempting less restrictive and allegedly less effective means like content filtering. Now, age verification is Texas’ preferred solution, and strict scrutiny shouldn’t apply to a law that just asks someone to show ID to see adult content, Nielson argued.

“In our history we have always said kids can’t come and look at this stuff,” Nielson argued. “So it seems not correct to me as a historical matter to say, well actually it’s always been presumptively unconstitutional. … But we’ve done it forever. Strict scrutiny somehow has always been satisfied.”

Like groups suing, Texas also asked the Supreme Court to be very clear when writing guidance for the 5th Circuit should the court vacate and remand the case. But Texas wants justices to reiterate that just because the case was remanded, that doesn’t mean the 5th Circuit can’t reinstitute the stay on the preliminary injunction that was ordered following the 5th Circuit’s prior review.

On rebuttal, Shaffer told SCOTUS that out of “about 20 other laws that by some views may look a lot like Texas'” law, “this is the worst of them.” He described Texas Attorney General Ken Paxton as a “hostile regulator who’s saying to adults, you should not be here.”

“I strongly urge this court to stick with strict scrutiny as the applicable standard of review when we’re talking about content-based burdens on speakers,” Shaffer said.

In a press release, Vera Eidelman, a senior staff attorney with the ACLU Speech, Privacy, and Technology Project, said that “efforts to childproof the Internet not only hurt everyone’s ability to access information, but often give the government far too much leeway to go after speech it doesn’t like—all while failing to actually protect children.”

Texas defends requiring ID for porn to SCOTUS: “We’ve done this forever” Read More »

the-key-moment-came-38-minutes-after-starship-roared-off-the-launch-pad

The key moment came 38 minutes after Starship roared off the launch pad


SpaceX wasn’t able to catch the Super Heavy booster, but Starship is on the cusp of orbital flight.

The sixth flight of Starship lifts off from SpaceX’s Starbase launch site at Boca Chica Beach, Texas. Credit: SpaceX.

SpaceX launched its sixth Starship rocket Tuesday, proving for the first time that the stainless steel ship can maneuver in space and paving the way for an even larger, upgraded vehicle slated to debut on the next test flight.

The only hiccup was an abortive attempt to catch the rocket’s Super Heavy booster back at the launch site in South Texas, something SpaceX achieved on the previous flight on October 13. The Starship upper stage flew halfway around the world, reaching an altitude of 118 miles (190 kilometers) before plunging through the atmosphere for a pinpoint slow-speed splashdown in the Indian Ocean.

The sixth flight of the world’s largest launcher—standing 398 feet (121.3 meters) tall—began with a lumbering liftoff from SpaceX’s Starbase facility near the US-Mexico border at 4 pm CST (22: 00 UTC) Tuesday. The rocket headed east over the Gulf of Mexico, propelled by 33 Raptor engines clustered on the bottom of its Super Heavy first stage.

A few miles away, President-elect Donald Trump joined SpaceX founder Elon Musk to witness the launch. The SpaceX boss became one of Trump’s closest allies in this year’s presidential election, giving the world’s richest man extraordinary influence in US space policy. Sen. Ted Cruz (R-Texas) was there, too, among other lawmakers. Gen. Chance Saltzman, the top commander in the US Space Force, stood nearby, chatting with Trump and other VIPs.

Elon Musk, SpaceX’s CEO, President-elect Donald Trump, and Gen. Chance Saltzman of the US Space Force watch the sixth launch of Starship Tuesday. Credit: Brandon Bell/Getty Images

From their viewing platform, they watched Starship climb into a clear autumn sky. At full power, the 33 Raptors chugged more than 40,000 pounds of super-cold liquid methane and liquid oxygen per second. The engines generated 16.7 million pounds of thrust, 60 percent more than the Soviet N1, the second-largest rocket in history.

Eight minutes later, the rocket’s upper stage, itself also known as Starship, was in space, completing the program’s fourth straight near-flawless launch. The first two test flights faltered before reaching their planned trajectory.

A brief but crucial demo

As exciting as it was, we’ve seen all that before. One of the most important new things engineers wanted to test on this flight occurred about 38 minutes after liftoff.

That’s when Starship reignited one of its six Raptor engines for a brief burn to make a slight adjustment to its flight path. The burn lasted only a few seconds, and the impulse was small—just a 48 mph (77 km/hour) change in velocity, or delta-V—but it demonstrated that the ship can safely deorbit itself on future missions.

With this achievement, Starship will likely soon be cleared to travel into orbit around Earth and deploy Starlink Internet satellites or conduct in-space refueling experiments, two of the near-term objectives on SpaceX’s Starship development roadmap.

Launching Starlinks aboard Starship will allow SpaceX to expand the capacity and reach of its commercial consumer broadband network, which, in turn, provides revenue for Musk to reinvest into Starship. Orbital refueling enables Starship voyages beyond low-Earth orbit, fulfilling SpaceX’s multibillion-dollar contract with NASA to provide a human-rated Moon lander for the agency’s Artemis program. Likewise, transferring cryogenic propellants in orbit is a prerequisite for sending Starships to Mars, making real Musk’s dream of creating a settlement on the red planet.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Until now, SpaceX has intentionally launched Starships to speeds just shy of the blistering velocities needed to maintain orbit. Engineers wanted to test the Raptor’s ability to reignite in space on the third Starship test flight in March, but the ship lost control of its orientation, and SpaceX canceled the engine firing.

Before going for a full orbital flight, officials needed to confirm that Starship could steer itself back into the atmosphere for reentry, ensuring it wouldn’t present any risk to the public with an unguided descent over a populated area. After Tuesday, SpaceX can check this off its to-do list.

“Congrats to SpaceX on Starship’s sixth test flight,” NASA Administrator Bill Nelson posted on X. “Exciting to see the Raptor engine restart in space—major progress towards orbital flight. Starship’s success is Artemis’ success. Together, we will return humanity to the Moon & set our sights on Mars.”

While it lacks the pizzazz of a fiery launch or landing, the engine relight unlocks a new phase of Starship development. SpaceX has now proven that the rocket is capable of reaching space with a fair measure of reliability. Next, engineers will fine-tune how to reliably recover the booster and the ship and learn how to use them.

Acid test

SpaceX appears well on its way to doing this. While SpaceX didn’t catch the Super Heavy booster with the launch tower’s mechanical arms Tuesday, engineers have shown they can do it. The challenge of catching Starship itself back at the launch pad is more daunting. The ship starts its reentry thousands of miles from Starbase, traveling approximately 17,000 mph (27,000 km/hour), and must thread the gap between the tower’s catch arms within a matter of inches.

The good news is that SpaceX has now twice proven it can bring Starship back to a precision splashdown in the Indian Ocean. In October, the ship settled into the sea in darkness. SpaceX moved the launch time for Tuesday’s flight to the late afternoon, setting up for splashdown shortly after sunrise northwest of Australia.

The shift in time paid off with some stunning new visuals. Cameras mounted on the outside of Starship beamed dazzling live views back to SpaceX through the Starlink network, showing a now-familiar glow of plasma encasing the spacecraft as it plowed deeper into the atmosphere. But this time, daylight revealed the ship’s flaps moving to control its belly-first descent toward the ocean. After passing through a deck of low clouds, Starship reignited its Raptor engines and tilted from horizontal to vertical, making contact with the water tail-first within view of a floating buoy and a nearby aircraft in position to observe the moment.

Here’s a replay of the spacecraft’s splashdown around 65 minutes after launch.

Splashdown confirmed! Congratulations to the entire SpaceX team on an exciting sixth flight test of Starship! pic.twitter.com/bf98Va9qmL

— SpaceX (@SpaceX) November 19, 2024

The ship made it through reentry despite flying with a substandard heat shield. Starship’s thermal protection system is made up of thousands of ceramic tiles to protect the ship from temperatures as high as 2,600° Fahrenheit (1,430° Celsius).

Kate Tice, a SpaceX engineer hosting the company’s live broadcast of the mission, said teams at Starbase removed 2,100 heat shield tiles from Starship ahead of Tuesday’s launch. Their removal exposed wider swaths of the ship’s stainless steel skin to super-heated plasma, and SpaceX teams were eager to see how well the spacecraft held up during reentry. In the language of flight testing, this approach is called exploring the corners of the envelope, where engineers evaluate how a new airplane or rocket performs in extreme conditions.

“Don’t be surprised if we see some wackadoodle stuff happen here,” Tice said. There was nothing of the sort. One of the ship’s flaps appeared to suffer some heating damage, but it remained intact and functional, and the harm looked to be less substantial than damage seen on previous flights.

Many of the removed tiles came from the sides of Starship where SpaceX plans to place catch fittings on future vehicles. These are the hardware protuberances that will catch on the top side of the launch tower’s mechanical arms, similar to fittings used on the Super Heavy booster.

“The next flight, we want to better understand where we can install catch hardware, not necessarily to actually do the catch but to see how that hardware holds up in those spots,” Tice said. “Today’s flight will help inform ‘does the stainless steel hold up like we think it may, based on experiments that we conducted on Flight 5?'”

Musk wrote on his social media platform X that SpaceX could try to bring Starship back to Starbase for a catch on the eighth test flight, which is likely to occur in the first half of 2025.

“We will do one more ocean landing of the ship,” Musk said. “If that goes well, then SpaceX will attempt to catch the ship with the tower.”

The heat shield, Musk added, is a focal point of SpaceX’s attention. The delicate heat-absorbing tiles used on the belly of the space shuttle proved vexing to NASA technicians. Early in the shuttle’s development, NASA had trouble keeping tiles adhered to the shuttle’s aluminum skin. Each of the shuttle tiles was custom-machined to fit on a specific location on the orbiter, complicating refurbishment between flights. Starship’s tiles are all hexagonal in shape and agnostic to where technicians place them on the vehicle.

“The biggest technology challenge remaining for Starship is a fully & immediately reusable heat shield,” Musk wrote on X. “Being able to land the ship, refill propellant & launch right away with no refurbishment or laborious inspection. That is the acid test.”

This photo of the Starship vehicle for Flight 6, numbered Ship 31, shows exposed portions of the vehicle’s stainless steel skin after tile removal. Credit: SpaceX

There were no details available Tuesday night on what caused the Super Heavy booster to divert from its planned catch on the launch tower. After detaching from the Starship upper stage less than three minutes into the flight, the booster reversed course to begin the journey back to Starbase.

Then SpaceX’s flight director announced the rocket would fly itself into the Gulf rather than back to the launch site: “Booster offshore divert.”

The booster finished its descent with a seemingly perfect landing burn using a subset of its Raptor engines. As expected after the water landing, the booster—itself 233 feet (71 meters) tall—toppled and broke apart in a dramatic fireball visible to onshore spectators.

In an update posted to its website after the launch, SpaceX said automated health checks of hardware on the launch and catch tower triggered the aborted catch attempt. The company did not say what system failed the health check. As a safety measure, SpaceX must send a manual command for the booster to come back to land in order to prevent a malfunction from endangering people or property.

Turning it up to 11

There will be plenty more opportunities for more booster catches in the coming months as SpaceX ramps up its launch cadence at Starbase. Gwynne Shotwell, SpaceX’s president and chief operating officer, hinted at the scale of the company’s ambitions last week.

“We just passed 400 launches on Falcon, and I would not be surprised if we fly 400 Starship launches in the next four years,” she said at the Barron Investment Conference.

The next batch of test flights will use an improved version of Starship designated Block 2, or V2. Starship Block 2 comes with larger propellant tanks, redesigned forward flaps, and a better heat shield.

The new-generation Starship will hold more than 11 million pounds of fuel and oxidizer, about a million pounds more than the capacity of Starship Block 1. The booster and ship will produce more thrust, and Block 2 will measure 408 feet (124.4 meters) tall, stretching the height of the full stack by a little more than 10 feet.

Put together, these modifications should give Starship the ability to heave a payload of up to 220,000 pounds (100 metric tons) into low-Earth orbit, about twice the carrying capacity of the first-generation ship. Further down the line, SpaceX plans to introduce Starship Block 3 to again double the ship’s payload capacity.

Just as importantly, these changes are designed to make it easier for SpaceX to recover and reuse the Super Heavy booster and Starship upper stage. SpaceX’s goal of fielding a fully reusable launcher builds on the partial reuse SpaceX pioneered with its Falcon 9 rocket. This should dramatically bring down launch costs, according to SpaceX’s vision.

With Tuesday’s flight, it’s clear Starship works. Now it’s time to see what it can do.

Updated with additional details, quotes, and images.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The key moment came 38 minutes after Starship roared off the launch pad Read More »

starship-is-about-to-launch-on-its-fifth-flight,-and-this-time-there’s-a-catch

Starship is about to launch on its fifth flight, and this time there’s a catch

“We landed with half a centimeter accuracy in the ocean, so we think we have a reasonable chance to come back to the tower,” Gerstenmaier said.

Launch playbook

The Starship upper stage, meanwhile, will light six Raptor engines to accelerate to nearly orbital velocity, giving the rocket enough oomph to coast halfway around the world before falling back into the atmosphere over the Indian Ocean.

This is a similar trajectory to the one Starship flew in June, when it survived a fiery reentry for a controlled splashdown. It was the first time SpaceX completed an end-to-end Starship test flight. Onboard cameras showed fragments of the heat shield falling off Starship when it reentered the atmosphere, but the vehicle maintained control and reignited its Raptor engines, flipped from a horizontal to a vertical orientation, and settled into the Indian Ocean northwest of Australia.

After analyzing the results from the June mission, SpaceX engineers decided to rework the heat shield for the next Starship vehicle. The company said its technicians spent more than 12,000 hours replacing the entire thermal protection system with new-generation tiles, a backup ablative layer, and additional protections between the ship’s flap structures.

From start to finish, Sunday’s test flight should last approximately 1 hour and 5 minutes.

This diagram illustrates the path the Super Heavy booster will take to return to the launch pad in Texas, while the Starship upper stage continues the climb to space.

Credit: SpaceX

This diagram illustrates the path the Super Heavy booster will take to return to the launch pad in Texas, while the Starship upper stage continues the climb to space. Credit: SpaceX

Here’s an overview of the key events during Sunday’s flight:

 T+00: 00: 02: Liftoff

 T+00: 01: 02: Maximum aerodynamic pressure

 T+00: 02: 33: Super Heavy MECO (most engines cut off)

 T+00: 02: 41: Stage separation and ignition of Starship engines

• T+00: 02: 48: Super Heavy boost-back burn start

 T+00: 03: 41: Super Heavy boost-back burn shutdown

 T+00: 03: 43: Hot staging ring jettison

• T+00: 06: 08: Super Heavy is subsonic

• T+00: 06: 33: Super Heavy landing burn start

• T+00: 06: 56: Super Heavy landing burn shutdown and catch attempt

• T+00: 08: 27: Starship engine cutoff

• T+00: 48: 03: Starship reentry

• T+01: 02: 34: Starship is transonic

• T+01: 03: 43: Starship is subsonic

• T+01: 05: 15: Starship landing flip

• T+01: 05: 20: Starship landing burn

• T+01: 05: 34: Starship splashdown in Indian Ocean

SpaceX officials hope to see Starship’s heat shield stay intact as it dips into the atmosphere, when temperatures will reach 2,600° Fahrenheit (1,430° Celsius), hot enough to melt aluminum, the metal used to build many launch vehicles. SpaceX chose stainless steel for Starship because it strong at cryogenic temperatures—the rocket consumes super-cold fuel and oxidizer—and has a higher melting point than aluminum.

Starship is about to launch on its fifth flight, and this time there’s a catch Read More »

the-war-of-words-between-spacex-and-the-faa-keeps-escalating

The war of words between SpaceX and the FAA keeps escalating

Elon Musk, SpaceX's founder and CEO, has called for the resignation of the FAA administrator.

Enlarge / Elon Musk, SpaceX’s founder and CEO, has called for the resignation of the FAA administrator.

The clash between SpaceX and the Federal Aviation Administration escalated this week, with Elon Musk calling for the head of the federal regulator to resign after he defended the FAA’s oversight and fines levied against the commercial launch company.

The FAA has said it doesn’t expect to determine whether to approve a launch license for SpaceX’s next Starship test flight until late November, two months later than the agency previously communicated to Musk’s launch company. Federal regulators are reviewing changes to the rocket’s trajectory necessary for SpaceX to bring Starship’s giant reusable Super Heavy booster back to the launch pad in South Texas. This will be the fifth full-scale test flight of Starship but the first time SpaceX attempts such a maneuver on the program.

This week, SpaceX assembled the full Starship rocket on its launch pad at the company’s Starbase facility near Brownsville, Texas. “Starship stacked for Flight 5 and ready for launch, pending regulatory approval,” SpaceX posted on X.

Apart from the Starship regulatory reviews, the FAA last week announced it is proposing more than $633,000 in fines on SpaceX due to alleged violations of the company’s launch license associated with two flights of the company’s Falcon 9 rocket from Florida. It is rare for the FAA’s commercial spaceflight division to fine launch companies.

Michael Whitaker, the FAA’s administrator, discussed the agency’s ongoing environmental and safety reviews of SpaceX’s Starship rocket in a hearing before a congressional subcommittee in Washington Tuesday. During the hearing, which primarily focused on the FAA’s oversight of Boeing’s commercial airplane business, one lawmaker asked Whitaker the FAA’s relationship with SpaceX.

Public interest

“I think safety is in the public interest and that’s our primary focus,” said Michael Whitaker, the FAA administrator, in response to questions from Rep. Kevin Kiley, a California Republican. “It’s the only tool we have to get compliance on safety matters,” he said, referring to the FAA’s fines.

The stainless-steel Super Heavy booster is larger than a Boeing 747 jumbo jet. SpaceX says the flight path to return the first stage of the rocket to land will mean a “slightly larger area could experience a sonic boom,” and a stainless-steel ring that jettisons from the top of the booster, called the hot-staging ring, will fall in a different location in the Gulf of Mexico just offshore from the rocket’s launch and landing site.

The FAA, which is primarily charged with ensuring rocket launches don’t endanger the public, is consulting with other agencies on these matters, along with issues involving SpaceX’s discharge of water into the environment around the Starship launch pad in Texas. The pad uses water to cool a steel flame deflector that sits under the 33 main engines of Starship’s Super Heavy booster.

SpaceX says fines levied against it this year by the Texas Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency (EPA) related to the launch pad’s water system were “entirely tied to disagreements over paperwork” and not any dumping of pollutants into the environment around the Starship launch site.

SpaceX installed the water-cooled flame deflector under the Starship launch mount after the engine exhaust rocket’s first test flight excavated a large hole in the ground. Gwynne Shotwell, SpaceX’s president and chief operating officer, summed up her view of the issue in a hearing with Texas legislators in Austin on Tuesday.

“To protect that from happening again, we built this kind of upside-down shower head to basically cool the flame as the rocket was lifting off,” she said. “That was licensed and permitted by TCEQ. The EPA came in afterwards and didn’t like the license or the permit that we had for that, and wanted to turn it into a federal permit, which we are working on now.”

“We work very closely with organizations such as TCEQ,” Shotwell said. “You may have read a little bit of nonsense in the papers recently about that, but we’re working quite well with them.”

The war of words between SpaceX and the FAA keeps escalating Read More »

elon-musk-says-spacex-and-x-will-relocate-their-headquarters-to-texas

Elon Musk says SpaceX and X will relocate their headquarters to Texas

Home base at Starbase —

The billionaire blamed a California gender identity law for moving SpaceX and X headquarters.

A pedestrian walks past a flown Falcon 9 booster at SpaceX headquarters in Hawthorne, California, on Tuesday, the same day Elon Musk said he will relocate the headquarters to Texas.

Enlarge / A pedestrian walks past a flown Falcon 9 booster at SpaceX headquarters in Hawthorne, California, on Tuesday, the same day Elon Musk said he will relocate the headquarters to Texas.

Elon Musk said Tuesday that he will move the headquarters of SpaceX and his social media company X from California to Texas in response to a new gender identity law signed by California Governor Gavin Newsom.

Musk’s announcement, made via a post on X, follows his decision in 2021 to move the headquarters of the electric car company Tesla from Palo Alto, California, to Austin, Texas, in the wake of coronavirus lockdowns in the Bay Area the year before. Now, two of Musk’s other major holdings are making symbolic moves out of California: SpaceX to the company’s Starbase launch facility near Brownsville, Texas, and X to Austin.

The new gender identity law, signed by Governor Newsom, a Democrat, on Monday, bars school districts in California from requiring teachers to disclose a change in a student’s gender identification or sexual orientation to their parents without the child’s permission. Musk wrote on X that the law was the “final straw” prompting the relocation to Texas, where the billionaire executive and his companies could take advantage of lower taxes and light-touch regulations.

Earlier this year, SpaceX transferred its incorporation from Delaware to Texas after a Delaware judge invalidated his pay package at Tesla.

“Because of this law and the many others that preceded it, attacking both families and companies, SpaceX will now move its HQ from Hawthorne, California, to Starbase, Texas,” Musk wrote Tuesday on X.

The first-in-the-nation law in California is a flashpoint in the struggle between conservative school boards concerned about parental rights and proponents for the privacy rights of LGBTQ people.

“I did make it clear to Governor Newsom about a year ago that laws of this nature would force families and companies to leave California to protect their children,” wrote Musk, who on Saturday endorsed former President Donald Trump, the Republican nominee in this year’s presidential election.

In a statement, Newsom’s office said the law “does not allow a student’s name or gender identity to be changed on an official school record without parental consent” and “does not take away or undermine parents’ rights.”

What does this mean for SpaceX?

Musk’s comments on X didn’t mention details about the implications of his companies’ moves to Texas. However, while Tesla’s corporate headquarters relocated to Texas in 2021, the company still produces cars in California and announced a new engineering hub in Palo Alto last year. The situation with SpaceX is likely to be similar.

Since Musk bought Twitter in 2022, he renamed it X, rewrote the network’s policies on content moderation, and laid off most of the company’s staff, reducing its workforce to around 1,500 employees. With vast manufacturing capacities, SpaceX currently has more than 13,000 employees, so a relocation for Musk’s space company would affect more people and potentially be more disruptive than one at X.

SpaceX’s current headquarters in Hawthorne, California, serves as a factory, engineering design center, and mission control for the company’s rockets and spacecraft. Relocating these facilities wouldn’t be easy, but SpaceX may not need to.

Elon Musk says SpaceX and X will relocate their headquarters to Texas Read More »

pornhub-prepares-to-block-five-more-states-rather-than-check-ids

Pornhub prepares to block five more states rather than check IDs

“Uphill battle” —

The number of states blocked by Pornhub will soon nearly double.

Pornhub prepares to block five more states rather than check IDs

Aurich Lawson | Getty Images

Pornhub will soon be blocked in five more states as the adult site continues to fight what it considers privacy-infringing age-verification laws that require Internet users to provide an ID to access pornography.

On July 1, according to a blog post on the adult site announcing the impending block, Pornhub visitors in Indiana, Idaho, Kansas, Kentucky, and Nebraska will be “greeted by a video featuring” adult entertainer Cherie Deville, “who explains why we had to make the difficult decision to block them from accessing Pornhub.”

Pornhub explained that—similar to blocks in Texas, Utah, Arkansas, Virginia, Montana, North Carolina, and Mississippi—the site refuses to comply with soon-to-be-enforceable age-verification laws in this new batch of states that allegedly put users at “substantial risk” of identity theft, phishing, and other harms.

Age-verification laws requiring adult site visitors to submit “private information many times to adult sites all over the Internet” normalizes the unnecessary disclosure of personally identifiable information (PII), Pornhub argued, warning, “this is not a privacy-by-design approach.”

Pornhub does not outright oppose age verification but advocates for laws that require device-based age verification, which allows users to access adult sites after authenticating their identity on their devices. That’s “the best and most effective solution for protecting minors and adults alike,” Pornhub argued, because the age-verification technology is proven and less PII would be shared.

“Users would only get verified once, through their operating system, not on each age-restricted site,” Pornhub’s blog said, claiming that “this dramatically reduces privacy risks and creates a very simple process for regulators to enforce.”

A spokesperson for Pornhub-owner Aylo told Ars that “unfortunately, the way many jurisdictions worldwide have chosen to implement age verification is ineffective, haphazard, and dangerous.”

“Any regulations that require hundreds of thousands of adult sites to collect significant amounts of highly sensitive personal information is putting user safety in jeopardy,” Aylo’s spokesperson told Ars. “Moreover, as experience has demonstrated, unless properly enforced, users will simply access non-compliant sites or find other methods of evading these laws.

Age-verification laws are harmful, Pornhub says

Pornhub’s big complaint with current age-verification laws is that these laws are hard to enforce and seem to make it riskier than ever to visit an adult site.

“Since age verification software requires users to hand over extremely sensitive information, it opens the door for the risk of data breaches,” Pornhub’s blog said. “Whether or not your intentions are good, governments have historically struggled to secure this data. It also creates an opportunity for criminals to exploit and extort people through phishing attempts or fake [age verification] processes, an unfortunate and all too common practice.”

Over the past few years, the risk of identity theft or stolen PII on both widely used and smaller niche adult sites has been well-documented.

Hundreds of millions of people were impacted by major leaks exposing PII shared with popular adult sites like Adult Friend Finder and Brazzers in 2016, while likely tens of thousands of users were targeted on eight poorly secured adult sites in 2018. Niche and free sites have also been vulnerable to attacks, including millions collectively exposed through breaches of fetish porn site Luscious in 2019 and MyFreeCams in 2021.

And those are just the big breaches that make headlines. In 2019, Kaspersky Lab reported that malware targeting online porn account credentials more than doubled in 2018, and researchers analyzing 22,484 pornography websites estimated that 93 percent were leaking user data to a third party.

That’s why Pornhub argues that, as states have passed age-verification laws requiring ID, they’ve “introduced harm” by redirecting visitors to adult sites that have fewer privacy protections and worse security, allegedly exposing users to more threats.

As an example, Pornhub reported, traffic to Pornhub in Louisiana “dropped by approximately 80 percent” after their age-verification law passed. That allegedly showed not just how few users were willing to show an ID to access their popular platform, but also how “very easily” users could simply move to “pirate, illegal, or other non-compliant sites that don’t ask visitors to verify their age.”

Pornhub has continued to argue that states passing laws like Louisiana’s cannot effectively enforce the laws and are simply shifting users to make riskier choices when accessing porn.

“The Louisiana law and other copycat state-level laws have no regulator, only civil liability, which results in a flawed enforcement regime, effectively making it an option for platform operators to comply,” Pornhub’s blog said. As one of the world’s most popular adult platforms, Pornhub would surely be targeted for enforcement if found to be non-compliant, while smaller adult sites perhaps plagued by security risks and disincentivized to check IDs would go unregulated, the thinking goes.

Aylo’s spokesperson shared 2023 Similarweb data with Ars, showing that sites complying with age-verification laws in Virginia, including Pornhub and xHamster, lost substantial traffic while seven non-compliant sites saw a sharp uptick in traffic. Similar trends were observed in Google trends data in Utah and Mississippi, while market shares were seemingly largely maintained in California, a state not yet checking IDs to access adult sites.

Pornhub prepares to block five more states rather than check IDs Read More »

bird-flu-virus-from-texas-human-case-kills-100%-of-ferrets-in-cdc-study

Bird flu virus from Texas human case kills 100% of ferrets in CDC study

Animal study —

H5N1 bird flu viruses have shown to be lethal in ferret model before.

Bird flu virus from Texas human case kills 100% of ferrets in CDC study

The strain of H5N1 bird flu isolated from a dairy worker in Texas was 100 percent fatal in ferrets used to model influenza illnesses in humans. However, the virus appeared inefficient at spreading via respiratory droplets, according to newly released study results from the Centers for Disease Control and Prevention.

The data confirms that H5N1 infections are significantly different from seasonal influenza viruses that circulate in humans. Those annual viruses make ferrets sick but are not deadly. They have also shown to be highly efficient at spreading via respiratory droplets, with 100 percent transmission rates in laboratory settings. In contrast, the strain from the Texas man (A/Texas/37/2024) appeared to have only a 33 percent transmission rate via respiratory droplets among ferrets.

“This suggests that A/Texas/37/2024-like viruses would need to undergo changes to spread efficiently by droplets through the air, such as from coughs and sneezes,” the CDC said in its data summary. The agency went on to note that “efficient respiratory droplet spread, like what is seen with seasonal influenza viruses, is needed for sustained person-to-person spread to happen.”

In the CDC’s study, researchers infected six ferrets with A/Texas/37/2024. The CDC’s data summary did not specify how the ferrets were infected in this study, but in other recent ferret H5N1 studies, the animals were infected by putting the virus in their noses. Ars has reached out to the agency for clarity on the inoculation route in the latest study and will update the story with any additional information provided.

All six of the infected ferrets developed severe disease and died. To test how well the virus could spread among the ferrets, the CDC scientists set up experiments to test transmission through direct contact and respiratory droplets. For the direct transmission test, three healthy ferrets were placed in the same enclosures with three experimentally infected ferrets. All three healthy ferrets became infected.

For the respiratory transmission test, three healthy ferrets were placed in enclosures next to enclosures containing the experimentally infected animals. The infected and uninfected ferrets shared air, but did not have direct contact with each other. Of the three healthy ferrets, only one contracted the H5N1 virus (33 percent). Additionally, that one respiratory transmission event seemed to have a one- to two-day delay compared with what’s seen in the same test with seasonal influenza viruses. This suggests further that the virus is inefficient at respiratory transmission.

The CDC called the overall results “not surprising.” Previous ferret experiments with H5N1 isolates—collected prior to the current bird flu outbreak among US dairy cows—have also found that H5N1 is often lethal to ferrets. Likewise, H5N1 isolates collected from Spain and Chile during the current global outbreak also found that the virus was inefficient at spreading via respiratory droplets among ferrets—with rates ranging from 0 percent to 37.5 percent.

For now, the findings don’t affect the CDC’s overall risk assessment for the general public, which is low. However, it does reinforce the risk to those who have contact with infected animals, particularly dairy and poultry farm workers.

To date, there have been four human cases of H5N1 in the US since the current global bird flu outbreak began in 2022—one in a poultry farm worker in 2022 and three in dairy farm workers, all reported between the beginning of April and the end of May this year. So far, the cases have been mild, the CDC noted, but given the results in ferrets, “it is possible that there will be serious illnesses among people,” the agency concluded.

As of June 9, the US Department of Agriculture has confirmed H5N1 in 85 dairy herds and one alpaca farm across 10 states.

Bird flu virus from Texas human case kills 100% of ferrets in CDC study Read More »

spacex-is-about-to-launch-starship-again—the-faa-will-be-more-forgiving-this-time

SpaceX is about to launch Starship again—the FAA will be more forgiving this time

The rocket for SpaceX's fourth full-scale Starship test flight awaits liftoff from Starbase, the company's private launch base in South Texas.

Enlarge / The rocket for SpaceX’s fourth full-scale Starship test flight awaits liftoff from Starbase, the company’s private launch base in South Texas.

SpaceX

The Federal Aviation Administration approved the commercial launch license for the fourth test flight of SpaceX’s Starship rocket Tuesday, with liftoff from South Texas targeted for just after sunrise Thursday.

“The FAA has approved a license authorization for SpaceX Starship Flight 4,” the agency said in a statement. “SpaceX met all safety and other licensing requirements for this test flight.”

Shortly after the FAA announced the launch license, SpaceX confirmed plans to launch the fourth test flight of the world’s largest rocket at 7: 00 am CDT (12: 00 UTC) Thursday. The launch window runs for two hours.

This flight follows three prior demonstration missions, each progressively more successful, of SpaceX’s privately developed mega-rocket. The last time Starship flew—on March 14—it completed an eight-and-a-half minute climb into space, but the ship was unable to maneuver itself as it coasted nearly 150 miles (250 km) above Earth. This controllability problem caused the rocket to break apart during reentry.

On Thursday’s flight, SpaceX officials will expect the ascent portion of the test flight to be similarly successful to the launch in March. The objectives this time will be to demonstrate Starship’s ability to survive the most extreme heating of reentry, when temperatures peak at 2,600° Fahrenheit (1,430° Celsius) as the vehicle plunges into the atmosphere at more than 20 times the speed of sound.

SpaceX officials also hope to see the Super Heavy booster guide itself toward a soft splashdown in the Gulf of Mexico just offshore from the company’s launch site, known as Starbase, in Cameron County, Texas.

“The fourth flight test turns our focus from achieving orbit to demonstrating the ability to return and reuse Starship and Super Heavy,” SpaceX wrote in an overview of the mission.

Last month, SpaceX completed a “wet dress rehearsal” at Starbase, where the launch team fully loaded the rocket with cryogenic methane and liquid oxygen propellants. Before the practice countdown, SpaceX test-fired the booster and ship at the launch site. More recently, technicians installed components of the rocket’s self-destruct system, which would activate to blow up the rocket if it flies off course.

Then, on Tuesday, SpaceX lowered the Starship upper stage from the top of the Super Heavy booster, presumably to perform final touch-ups to the ship’s heat shield, composed of 18,000 hexagonal ceramic tiles to protect its stainless-steel structure during reentry. Ground teams were expected to raise the ship, or upper stage, back on top of the booster sometime Wednesday, returning the rocket to its full height of 397 feet (121 meters) ahead of Thursday morning’s launch window.

The tick-tock of Starship’s fourth flight

If all goes according to plan, SpaceX’s launch team will start loading 10 million pounds of super-cold propellants into the rocket around 49 minutes before liftoff Thursday. The methane and liquid oxygen will first flow into the smaller tanks on the ship, then into the larger tanks on the booster.

The rocket should be fully loaded about three minutes prior to launch, and, following a sequence of automated checks, the computer controlling the countdown will give the command to light the booster’s 33 Raptor engines. Three seconds later, the rocket will begin its vertical climb off the launch mount, with its engines capable of producing more than 16 million pounds of thrust at full power.

Heading east from the Texas Gulf Coast, the rocket will exceed the speed of sound in about a minute, then begin shutting down its 33 main engines around 2 minutes and 41 seconds after liftoff. Then, just as the Super Heavy booster jettisons to begin a descent back to Earth, Starship’s six Raptor engines will ignite to continue pushing the upper portion of the rocket into space. Starship’s engines are expected to burn until T+ 8 minutes, 23 seconds, accelerating the rocket to near-orbital velocity with enough energy to fly an arcing trajectory halfway around the world to the Indian Ocean.

All of this will be similar to the events of the last Starship launch in March. What differs in the flight plan this time involves the attempts to steer the booster and ship back to Earth. This is important to lay the groundwork for future flights, when SpaceX wants to bring the Super Heavy booster—the size of the fuselage of a Boeing 747 jumbo jet—to a landing back at its launch pad. Eventually, SpaceX also intends to recover reusable Starships back at Starbase or other spaceports.

This infographic released by SpaceX shows the flight profile for SpaceX's fourth Starship launch.

Enlarge / This infographic released by SpaceX shows the flight profile for SpaceX’s fourth Starship launch.

SpaceX

Based on the results of the March test flight, SpaceX still has a lot to prove in these areas. On that flight, the engines on the Super Heavy booster could not complete all the burns required to guide the rocket toward the splashdown zone in the Gulf of Mexico. The booster lost control as it plummeted toward the ocean.

Engineers traced the failure to blockage in a filter where liquid oxygen flows into the Raptor engines. Notably, a similar problem occurred on the second Starship test flight last November. The Super Heavy booster awaiting launch Thursday has additional hardware to improve propellant filtration capabilities, according to SpaceX. The company also implemented “operational changes” on the booster for the upcoming test flight, including to jettison the Super Heavy’s staging ring, which sits between the booster and ship during launch, to reduce the rocket’s mass during descent.

SpaceX has a lot of experience bringing back its fleet of Falcon 9 boosters. The company now boasts a streak of more than 240 successful rocket landings in a row, so it’s reasonable to expect SpaceX will overcome the challenge of recovering the larger Super Heavy booster.

SpaceX is about to launch Starship again—the FAA will be more forgiving this time Read More »